共 50 条
On Chow Rings of Quiver Moduli
被引:0
|作者:
Belmans, Pieter
[1
]
Franzen, Hans
[2
]
机构:
[1] Univ Luxembourg, Dept Math, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] Paderborn Univ, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
关键词:
VECTOR-BUNDLES;
SPACES;
REPRESENTATIONS;
COHOMOLOGY;
VARIETIES;
D O I:
10.1093/imrn/rnad306
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We describe the point class and Todd class in the Chow ring of a moduli space of quiver representations, building on a result of Ellingsrud-Stromme. This, together with the presentation of the Chow ring by the second author, makes it possible to compute integrals on quiver moduli. To do so, we construct a canonical morphism of universal representations in great generality, and along the way point out its relation to the Kodaira-Spencer morphism. We illustrate the results by computing some invariants of some "small" Kronecker moduli spaces. We also prove that the first non-trivial (6-dimensional) Kronecker moduli space is isomorphic to the zero locus of a general section of $\mathcal{Q}<^>{\vee }(1)$ on $\textrm{Gr}(2,8)$.
引用
收藏
页码:10255 / 10272
页数:18
相关论文