On Chow Rings of Quiver Moduli

被引:0
|
作者
Belmans, Pieter [1 ]
Franzen, Hans [2 ]
机构
[1] Univ Luxembourg, Dept Math, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] Paderborn Univ, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
关键词
VECTOR-BUNDLES; SPACES; REPRESENTATIONS; COHOMOLOGY; VARIETIES;
D O I
10.1093/imrn/rnad306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the point class and Todd class in the Chow ring of a moduli space of quiver representations, building on a result of Ellingsrud-Stromme. This, together with the presentation of the Chow ring by the second author, makes it possible to compute integrals on quiver moduli. To do so, we construct a canonical morphism of universal representations in great generality, and along the way point out its relation to the Kodaira-Spencer morphism. We illustrate the results by computing some invariants of some "small" Kronecker moduli spaces. We also prove that the first non-trivial (6-dimensional) Kronecker moduli space is isomorphic to the zero locus of a general section of $\mathcal{Q}<^>{\vee }(1)$ on $\textrm{Gr}(2,8)$.
引用
收藏
页码:10255 / 10272
页数:18
相关论文
共 50 条
  • [31] A Gelfand–MacPherson Correspondence for Quiver Moduli
    Hans Franzen
    Algebras and Representation Theory, 2024, 27 : 1083 - 1110
  • [32] The Mukai Conjecture for Fano Quiver Moduli
    Reineke, Markus
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (04) : 1641 - 1644
  • [33] Prelog Chow rings and degenerations
    Christian Böhning
    Hans-Christian Graf von Bothmer
    Michel van Garrel
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2861 - 2894
  • [34] Chow rings of excellent quadrics
    Yagita, Nobuaki
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (11) : 2440 - 2449
  • [35] The Chow Rings of Generalized Grassmannians
    Duan, Haibao
    Zhao, Xuezhi
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (03) : 245 - 274
  • [36] Prelog Chow rings and degenerations
    Boehning, Christian
    Von Bothmer, Hans-Christian Graf
    van Garrel, Michel
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (05) : 2861 - 2894
  • [37] The Chow Rings of Generalized Grassmannians
    Haibao Duan
    Xuezhi Zhao
    Foundations of Computational Mathematics, 2010, 10 : 245 - 274
  • [38] Chow rings of matroids are Koszul
    Mastroeni, Matthew
    McCullough, Jason
    MATHEMATISCHE ANNALEN, 2022, 387 (3-4) : 1819 - 1851
  • [39] Cohomological arithmetic chow rings
    Burgos Gil, J. I.
    Kramer, J.
    Kuehn, U.
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2007, 6 (01) : 1 - 172
  • [40] Chow rings of matroids are Koszul
    Matthew Mastroeni
    Jason McCullough
    Mathematische Annalen, 2023, 387 : 1819 - 1851