Chow rings of vector space matroids

被引:0
|
作者
Hameister, Thomas [1 ]
Rao, Sujit [2 ]
Simpson, Connor [3 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] MIT, Dept Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Matroid; Eulerian; lattice; Chow ring; NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Chow ring of a matroid (or more generally, atomic lattice) is an invariant whose importance was demonstrated by Adiprasito, Huh and Katz, who used it to resolve the long-standing Heron-Rota-Welsh conjecture. Here, we make a detailed study of the Chow rings of uniform matroids and of matroids of finite vector spaces. In particular, we express the Hilbert series of such matroids in terms of permutation statistics; in the full rank case, our formula yields the maj-exc q-Eulerian polynomials of Shareshian and Wachs. We also provide a formula for the Charney-Davis quantities of such matroids, which can be expressed in terms of either determinants or q-secant numbers.
引用
收藏
页码:55 / 83
页数:29
相关论文
共 50 条
  • [1] Chow rings of matroids are Koszul
    Mastroeni, Matthew
    McCullough, Jason
    MATHEMATISCHE ANNALEN, 2022, 387 (3-4) : 1819 - 1851
  • [2] Chow rings of matroids are Koszul
    Matthew Mastroeni
    Jason McCullough
    Mathematische Annalen, 2023, 387 : 1819 - 1851
  • [3] Straightening laws for Chow rings of matroids
    Larson, Matt
    JOURNAL OF ALGEBRA, 2025, 672 : 50 - 70
  • [4] Simplicial generation of Chow rings of matroids
    Backman, Spencer
    Eur, Christopher
    Simpson, Connor
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (11) : 4491 - 4535
  • [5] Chow rings of matroids as permutation representations
    Angarone, Robert
    Nathanson, Anastasia
    Reiner, Victor
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (01):
  • [6] WITT RINGS AND MATROIDS
    Craven, Thomas C.
    Kent, Zachary A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1505 - 1517
  • [7] Prelog Chow rings and degenerations
    Christian Böhning
    Hans-Christian Graf von Bothmer
    Michel van Garrel
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2861 - 2894
  • [8] Chow rings of excellent quadrics
    Yagita, Nobuaki
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (11) : 2440 - 2449
  • [9] On Chow Rings of Quiver Moduli
    Belmans, Pieter
    Franzen, Hans
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10255 - 10272
  • [10] The Chow Rings of Generalized Grassmannians
    Duan, Haibao
    Zhao, Xuezhi
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (03) : 245 - 274