Chow rings of vector space matroids

被引:0
|
作者
Hameister, Thomas [1 ]
Rao, Sujit [2 ]
Simpson, Connor [3 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] MIT, Dept Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Matroid; Eulerian; lattice; Chow ring; NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Chow ring of a matroid (or more generally, atomic lattice) is an invariant whose importance was demonstrated by Adiprasito, Huh and Katz, who used it to resolve the long-standing Heron-Rota-Welsh conjecture. Here, we make a detailed study of the Chow rings of uniform matroids and of matroids of finite vector spaces. In particular, we express the Hilbert series of such matroids in terms of permutation statistics; in the full rank case, our formula yields the maj-exc q-Eulerian polynomials of Shareshian and Wachs. We also provide a formula for the Charney-Davis quantities of such matroids, which can be expressed in terms of either determinants or q-secant numbers.
引用
收藏
页码:55 / 83
页数:29
相关论文
共 50 条
  • [41] On product identities and the Chow rings of holomorphic symplectic varieties
    Barros, Ignacio
    Flapan, Laure
    Marian, Alina
    Silversmith, Rob
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [42] Chow rings of low-degree Hurwitz spaces
    Canning, Samir
    Larson, Hannah
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (789): : 103 - 152
  • [43] Chow rings of fine quiver moduli are tautologically presented
    Franzen, H.
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) : 1197 - 1223
  • [44] Chow rings of toric varieties defined by atomic lattices
    Eva Maria Feichtner
    Sergey Yuzvinsky
    Inventiones mathematicae, 2004, 155 : 515 - 536
  • [45] Divided powers in Chow rings and integral Fourier transforms
    Moonen, Ben
    Polishchuk, Alexander
    ADVANCES IN MATHEMATICS, 2010, 224 (05) : 2216 - 2236
  • [46] Chow-Witt rings and topology of flag varieties
    Hudson, Thomas
    Matszangosz, akos K.
    Wendt, Matthias
    JOURNAL OF TOPOLOGY, 2024, 17 (04)
  • [47] Generalized Minkowski weights and Chow rings of T -varieties
    Botero, Ana
    DOCUMENTA MATHEMATICA, 2024, 29 : 831 - 861
  • [48] On the Chow rings of classifying spaces for classical groups.
    Molina Rojas, Luis Alberto
    Vistoli, Angelo
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2006, 116 : 271 - 298
  • [49] Chow rings of toric varieties defined by atomic lattices
    Feichtner, EM
    Yuzvinsky, S
    INVENTIONES MATHEMATICAE, 2004, 155 (03) : 515 - 536
  • [50] Base-sortable matroids and Koszulness of semigroup rings
    Blum, S
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (07) : 937 - 951