Global existence and stability results for a time-fractional diffusion equation with variable exponents

被引:0
|
作者
Aruchamy, Akilandeeswari [1 ]
Rayappan, Saranya [2 ]
Natarajan, Annapoorani [2 ]
机构
[1] Anna Univ, Dept Math, Chennai, Tamil Nadu, India
[2] Bharathiar Univ, Dept Math, Coimbatore, Tamil Nadu, India
关键词
35R11; 34A12; 35B35; ULAM-HYERS STABILITY; BLOW-UP; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; CALCULUS;
D O I
10.1007/s40065-024-00463-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to study the existence and stability results concerning a fractional partial differential equation with variable exponent source functions. The local existence result for alpha is an element of ( 0 , 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is established with the help of the alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} -resolvent kernel and the Schauder-fixed point theorem. The non-continuation theorem is proved by the fixed point technique and accordingly the global existence of solution is achieved. The uniqueness of the solution is obtained using the contraction principle and the stability results are discussed by means of Ulam-Hyers and generalized Ulam-Hyers-Rassias stability concepts via the Picard operator. Examples are provided to illustrate the results.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 50 条
  • [41] The inverse source problem for time-fractional diffusion equation: stability analysis and regularization
    Yang, Fan
    Fu, Chu-Li
    Li, Xiao-Xiao
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2015, 23 (06) : 969 - 996
  • [42] A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order
    Jia, Jinhong
    Wang, Hong
    Zheng, Xiangcheng
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1705 - 1730
  • [43] A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order
    Jinhong Jia
    Hong Wang
    Xiangcheng Zheng
    Numerical Algorithms, 2023, 94 : 1705 - 1730
  • [44] Global Existence and Stability of Solution for a p-Kirchhoff type Hyperbolic Equation with Variable Exponents
    Ouaoua, Amar
    Khaldi, Aya
    Maouni, Messaoud
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [45] Global Existence and Stability of Solution for a p-Kirchhoff type Hyperbolic Equation with Variable Exponents
    Khaldi, Aya
    Ouaoua, Amar
    Maouni, Messaoud
    Skikda
    MATHEMATICA BOHEMICA, 2020,
  • [46] Existence results for variable-order fractional Kirchhoff equations with variable exponents
    Mazan, Hatim
    Masmodi, Mohamed
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [47] Existence of a unique weak solution to a non-autonomous time-fractional diffusion equation with space-dependent variable order
    Van Bockstal, Karel
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [48] Existence of a unique weak solution to a non-autonomous time-fractional diffusion equation with space-dependent variable order
    Karel Van Bockstal
    Advances in Difference Equations, 2021
  • [49] Critical exponents of Fujita type for certain time-fractional diffusion equations
    Borikhanov, M.
    Torebek, B. T.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND PHYSICS, 2018, 9 (02): : 43 - 49
  • [50] Existence and stability results for time-fractional Schrödinger equations Related to the harmonic oscillator
    Sivashankar, M.
    Sabarinathan, S.
    PHYSICA SCRIPTA, 2025, 100 (01)