Global existence and stability results for a time-fractional diffusion equation with variable exponents

被引:0
|
作者
Aruchamy, Akilandeeswari [1 ]
Rayappan, Saranya [2 ]
Natarajan, Annapoorani [2 ]
机构
[1] Anna Univ, Dept Math, Chennai, Tamil Nadu, India
[2] Bharathiar Univ, Dept Math, Coimbatore, Tamil Nadu, India
关键词
35R11; 34A12; 35B35; ULAM-HYERS STABILITY; BLOW-UP; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; CALCULUS;
D O I
10.1007/s40065-024-00463-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to study the existence and stability results concerning a fractional partial differential equation with variable exponent source functions. The local existence result for alpha is an element of ( 0 , 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is established with the help of the alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} -resolvent kernel and the Schauder-fixed point theorem. The non-continuation theorem is proved by the fixed point technique and accordingly the global existence of solution is achieved. The uniqueness of the solution is obtained using the contraction principle and the stability results are discussed by means of Ulam-Hyers and generalized Ulam-Hyers-Rassias stability concepts via the Picard operator. Examples are provided to illustrate the results.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 50 条
  • [31] Uniqueness of the potential in a time-fractional diffusion equation
    Jing, Xiaohua
    Peng, Jigen
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (04): : 467 - 477
  • [32] Symmetry classification of time-fractional diffusion equation
    Naeem, I.
    Khan, M. D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 560 - 570
  • [33] REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
    McLean, William
    ANZIAM JOURNAL, 2010, 52 (02): : 123 - 138
  • [34] A backward problem for the time-fractional diffusion equation
    Liu, J. J.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2010, 89 (11) : 1769 - 1788
  • [35] RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Atkinson, Colin
    Osseiran, Adel
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) : 92 - 106
  • [36] On the maximum principle for a time-fractional diffusion equation
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2017, 20 : 1131 - 1145
  • [37] ON THE MAXIMUM PRINCIPLE FOR A TIME-FRACTIONAL DIFFUSION EQUATION
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) : 1131 - 1145
  • [38] Global existence and blow-up of solutions of the time-fractional space-involution reaction-diffusion equation
    Tapdigoglu, Ramiz
    Torebek, Berikbol
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (03) : 960 - 969
  • [39] Global existence and non-existence for a higher-order parabolic equation with time-fractional term
    Sun, Fuqin
    Shi, Peihu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (10) : 4145 - 4155
  • [40] Existence and regularity of solutions to time-fractional diffusion equations
    Mu, Jia
    Ahmad, Bashir
    Huang, Shuibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 985 - 996