Global existence and stability results for a time-fractional diffusion equation with variable exponents

被引:0
|
作者
Aruchamy, Akilandeeswari [1 ]
Rayappan, Saranya [2 ]
Natarajan, Annapoorani [2 ]
机构
[1] Anna Univ, Dept Math, Chennai, Tamil Nadu, India
[2] Bharathiar Univ, Dept Math, Coimbatore, Tamil Nadu, India
关键词
35R11; 34A12; 35B35; ULAM-HYERS STABILITY; BLOW-UP; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; CALCULUS;
D O I
10.1007/s40065-024-00463-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to study the existence and stability results concerning a fractional partial differential equation with variable exponent source functions. The local existence result for alpha is an element of ( 0 , 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is established with the help of the alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} -resolvent kernel and the Schauder-fixed point theorem. The non-continuation theorem is proved by the fixed point technique and accordingly the global existence of solution is achieved. The uniqueness of the solution is obtained using the contraction principle and the stability results are discussed by means of Ulam-Hyers and generalized Ulam-Hyers-Rassias stability concepts via the Picard operator. Examples are provided to illustrate the results.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 50 条
  • [21] Time-fractional diffusion equation with time dependent diffusion coefficient
    Fa, KS
    Lenzi, EK
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [22] Identifying a diffusion coefficient in a time-fractional diffusion equation
    Wei, T.
    Li, Y. S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 151 : 77 - 95
  • [23] GENERAL TIME-FRACTIONAL DIFFUSION EQUATION: SOME UNIQUENESS AND EXISTENCE RESULTS FOR THE INITIAL-BOUNDARY-VALUE PROBLEMS
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) : 676 - 695
  • [24] General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2016, 19 : 676 - 695
  • [25] Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation
    Luchko, Yury
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1766 - 1772
  • [26] Multi-term time-fractional diffusion equation and system: mild solutions and critical exponents
    Kassymov, Aidyn
    Tokmagambetov, Niyaz
    Torebek, Berikbol
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 295 - 321
  • [27] Time-fractional diffusion equation for signal smoothing
    Li, Yuanlu
    Liu, Fawang
    Turner, Ian W.
    Li, Tao
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 326 : 108 - 116
  • [28] Time-fractional diffusion equation with ψ-Hilfer derivative
    Vieira, Nelson
    Rodrigues, M. Manuela
    Ferreira, Milton
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [29] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474
  • [30] Stability and Convergence of a Time-Fractional Variable Order Hantush Equation for a Deformable Aquifer
    Atangana, Abdon
    Noutchie, S. C. Oukouomi
    ABSTRACT AND APPLIED ANALYSIS, 2013,