Global existence and stability results for a time-fractional diffusion equation with variable exponents

被引:0
|
作者
Aruchamy, Akilandeeswari [1 ]
Rayappan, Saranya [2 ]
Natarajan, Annapoorani [2 ]
机构
[1] Anna Univ, Dept Math, Chennai, Tamil Nadu, India
[2] Bharathiar Univ, Dept Math, Coimbatore, Tamil Nadu, India
关键词
35R11; 34A12; 35B35; ULAM-HYERS STABILITY; BLOW-UP; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; CALCULUS;
D O I
10.1007/s40065-024-00463-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to study the existence and stability results concerning a fractional partial differential equation with variable exponent source functions. The local existence result for alpha is an element of ( 0 , 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is established with the help of the alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} -resolvent kernel and the Schauder-fixed point theorem. The non-continuation theorem is proved by the fixed point technique and accordingly the global existence of solution is achieved. The uniqueness of the solution is obtained using the contraction principle and the stability results are discussed by means of Ulam-Hyers and generalized Ulam-Hyers-Rassias stability concepts via the Picard operator. Examples are provided to illustrate the results.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 50 条