An efficient hardware accelerator for NTT-based polynomial multiplication using FPGA

被引:0
|
作者
Salarifard, Raziyeh [1 ]
Soleimany, Hadi [2 ]
机构
[1] Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran
[2] Shahid Beheshti Univ, Cyber Res Ctr, Tehran, Iran
关键词
Post quantum cryptography; Latticed-based cryptography; Crystals-Kyber; Number theoretic transform; Polynomial multiplication;
D O I
10.1007/s13389-024-00357-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The number theoretic transform (NTT) is used to efficiently execute polynomial multiplication. It has become an important part of lattice-based post-quantum methods and the subsequent generation of standard cryptographic systems. However, implementing post-quantum schemes is challenging since they rely on intricate structures. This paper demonstrates how to develop a high-speed NTT multiplier highly optimized for FPGAs with few logical resources. We describe a novel architecture for NTT that leverages unique precomputation. Our method efficiently maps these specific pre-computed values into the built-in Block RAMs, which greatly reduces the area and time required for implementation when compared to previous works. We have chosen Kyber parameters to implement the proposed architectures. Compared to the most well-known approach for implementing Kyber's polynomial multiplication using NTT, the AC (area x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} latency) is reduced by 33%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$33\%$$\end{document}, and AT (area x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} time) is improved by 18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$18\%$$\end{document} as a result of the pre-computation we suggest in this study.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [1] CoHA-NTT: A Configurable Hardware Accelerator for NTT-based Polynomial Multiplication
    Derya, Kemal
    Mert, Ahmet Can
    Ozturk, Erdinc
    Savas, Erkay
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 89
  • [2] FPGA implementation of a run-time configurable NTT-based polynomial multiplication hardware
    Mert, Ahmet Can
    Ozturk, Erdinc
    Savas, Erkay
    MICROPROCESSORS AND MICROSYSTEMS, 2020, 78
  • [3] Hardware Acceleration of NTT-Based Polynomial Multiplication in CRYSTALS-Kyber
    Yang, Hang
    Chen, Rongmao
    Wang, Qiong
    Wu, Zixuan
    Peng, Wei
    INFORMATION SECURITY AND CRYPTOLOGY, INSCRYPT 2023, PT II, 2024, 14527 : 111 - 129
  • [4] Hardware Design of an NTT-Based Polynomial Multiplier
    Renteria-Mejia, C. P.
    Velasco-Medina, J.
    2014 IX SOUTHERN CONFERENCE ON PROGRAMMABLE LOGIC (SPL 2014), 2014,
  • [5] High-Speed NTT-based Polynomial Multiplication Accelerator for Post-Quantum Cryptography
    Bisheh-Niasar, Mojtaba
    Azarderakhsh, Reza
    Mozaffari-Kermani, Mehran
    2021 IEEE 28TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH 2021), 2021, : 94 - 101
  • [6] On the Number of Arithmetic Operations in NTT-based Polynomial Multiplication in Kyber and Dilithium Cryptosystems
    Ilter, Murat Burhan
    Kocak, Nese
    Uslu, Erkan
    Yayla, Oguz
    Yuca, Nergiz
    2021 14TH INTERNATIONAL CONFERENCE ON SECURITY OF INFORMATION AND NETWORKS (SIN 2021), 2021,
  • [7] A High-Speed NTT-Based Polynomial Multiplication Accelerator with Vector Extension of RISC-V for Saber Algorithm
    Kuang, Honglin
    Zhao, Yifan
    Han, Jun
    2022 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, APCCAS, 2022, : 592 - 595
  • [8] An Efficient and Scalable Sparse Polynomial Multiplication Accelerator for LAC on FPGA
    Zhang, Jipeng
    Liu, Zhe
    Yang, Hao
    Huang, Junhao
    Wu, Weibin
    2020 IEEE 26TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2020, : 390 - 397
  • [9] NTTU: An Area-Efficient Low-Power NTT-Uncoupled Architecture for NTT-Based Multiplication
    Zhang, Neng
    Qin, Qiao
    Yuan, Hang
    Zhou, Chenggao
    Yin, Shouyi
    Wei, Shaojun
    Liu, Leibo
    IEEE TRANSACTIONS ON COMPUTERS, 2020, 69 (04) : 520 - 533
  • [10] Lightweight and Efficient Hardware Implementation for Saber Using NTT Multiplication
    Xu, Tianyu
    Cui, Yijun
    Liu, Dongsheng
    Wang, Chenghua
    Liu, Weigiang
    2022 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, APCCAS, 2022, : 601 - 605