An efficient hardware accelerator for NTT-based polynomial multiplication using FPGA

被引:0
|
作者
Salarifard, Raziyeh [1 ]
Soleimany, Hadi [2 ]
机构
[1] Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran
[2] Shahid Beheshti Univ, Cyber Res Ctr, Tehran, Iran
关键词
Post quantum cryptography; Latticed-based cryptography; Crystals-Kyber; Number theoretic transform; Polynomial multiplication;
D O I
10.1007/s13389-024-00357-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The number theoretic transform (NTT) is used to efficiently execute polynomial multiplication. It has become an important part of lattice-based post-quantum methods and the subsequent generation of standard cryptographic systems. However, implementing post-quantum schemes is challenging since they rely on intricate structures. This paper demonstrates how to develop a high-speed NTT multiplier highly optimized for FPGAs with few logical resources. We describe a novel architecture for NTT that leverages unique precomputation. Our method efficiently maps these specific pre-computed values into the built-in Block RAMs, which greatly reduces the area and time required for implementation when compared to previous works. We have chosen Kyber parameters to implement the proposed architectures. Compared to the most well-known approach for implementing Kyber's polynomial multiplication using NTT, the AC (area x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} latency) is reduced by 33%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$33\%$$\end{document}, and AT (area x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} time) is improved by 18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$18\%$$\end{document} as a result of the pre-computation we suggest in this study.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [31] Cost-Efficient Adaboost-based Face Detection with FPGA Hardware Accelerator
    Chang, Keng-Chia
    Fan, Chih-Peng
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [32] Bandwidth Efficient Homomorphic Encrypted Matrix Vector Multiplication Accelerator on FPGA
    Yang, Yang
    Kuppannagari, Sanmukh R.
    Kannan, Rajgopal
    Prasanna, Viktor K.
    2022 21ST INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (ICFPT 2022), 2022, : 1 - 9
  • [33] AN ACCELERATOR OF EFFICIENT DSP BASED ON FPGA
    Zhang Boyu
    Zou Ha
    Tang Ming
    Lin Qiutong
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [34] An FPGA-based Hardware Accelerator for Iris Segmentation
    Avey, Joe
    Jones, Phillip
    Zambreno, Joseph
    2018 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2018,
  • [35] FPGA-Based Hardware Accelerator for Matrix Inversion
    Kokkiligadda V.S.K.
    Naikoti V.
    Patkotwar G.S.
    Sabat S.L.
    Peesapati R.
    SN Computer Science, 4 (2)
  • [36] KaratSaber: New Speed Records for Saber Polynomial Multiplication Using Efficient Karatsuba FPGA Architecture
    Wong, Zheng-Yan
    Wong, Denis C. -K.
    Lee, Wai-Kong
    Mok, Kai-Ming
    Yap, Wun-She
    Khalid, Ayesha
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (07) : 1830 - 1842
  • [37] Lightweight Polynomial Multiplication Accelerator for NTRU Using Shared SRAM
    Choi, Piljoo
    Kim, Dong Kyue
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (12) : 4574 - 4578
  • [38] A hardware accelerator and FPGA realization for reduced visibility graph construction using efficient bit representations
    Sridharan, K.
    Priya, T. K.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007, 54 (03) : 1800 - 1804
  • [39] An Efficient Hardware Accelerator for Block Sparse Convolutional Neural Networks on FPGA
    Yin, Xiaodi
    Wu, Zhipeng
    Li, Dejian
    Shen, Chongfei
    Liu, Yu
    IEEE EMBEDDED SYSTEMS LETTERS, 2024, 16 (02) : 158 - 161
  • [40] An Efficient FPGA-based Depthwise Separable Convolutional Neural Network Accelerator with Hardware Pruning
    Liu, Zhengyan
    Liu, Qiang
    Yan, Shun
    Cheung, Ray C. C.
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2024, 17 (01)