An efficient hardware accelerator for NTT-based polynomial multiplication using FPGA

被引:0
|
作者
Salarifard, Raziyeh [1 ]
Soleimany, Hadi [2 ]
机构
[1] Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran
[2] Shahid Beheshti Univ, Cyber Res Ctr, Tehran, Iran
关键词
Post quantum cryptography; Latticed-based cryptography; Crystals-Kyber; Number theoretic transform; Polynomial multiplication;
D O I
10.1007/s13389-024-00357-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The number theoretic transform (NTT) is used to efficiently execute polynomial multiplication. It has become an important part of lattice-based post-quantum methods and the subsequent generation of standard cryptographic systems. However, implementing post-quantum schemes is challenging since they rely on intricate structures. This paper demonstrates how to develop a high-speed NTT multiplier highly optimized for FPGAs with few logical resources. We describe a novel architecture for NTT that leverages unique precomputation. Our method efficiently maps these specific pre-computed values into the built-in Block RAMs, which greatly reduces the area and time required for implementation when compared to previous works. We have chosen Kyber parameters to implement the proposed architectures. Compared to the most well-known approach for implementing Kyber's polynomial multiplication using NTT, the AC (area x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} latency) is reduced by 33%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$33\%$$\end{document}, and AT (area x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} time) is improved by 18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$18\%$$\end{document} as a result of the pre-computation we suggest in this study.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [21] Open-Source SpMV Multiplication Hardware Accelerator for FPGA-Based HPC Systems
    Mpakos, Panagiotis
    Tasou, Ioanna
    Alverti, Chloe
    Miliadis, Panagiotis
    Malakonakis, Pavlos
    Theodoropoulos, Dimitris
    Goumas, Georgios
    Pnevmatikatos, Dionisios N.
    Koziris, Nectarios
    APPLIED RECONFIGURABLE COMPUTING. ARCHITECTURES, TOOLS, AND APPLICATIONS, ARC 2024, 2024, 14553 : 19 - 32
  • [22] LEAP: Lightweight and Efficient Accelerator for Sparse Polynomial Multiplication of HQC
    Tu, Yazheng
    He, Pengzhou
    Koc, Cetin Kaya
    Xie, Jiafeng
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2023, 31 (06) : 892 - 896
  • [23] A Hardware Accelerator for Polynomial Multiplication Operation of CRYSTALS-KYBER PQC Scheme
    Yaman, Ferhat
    Mert, Ahmet Can
    Ozturk, Erdinc
    Savas, Erkay
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1020 - 1025
  • [24] VLSI Design and FPGA Implementation of an NTT Hardware Accelerator for Homomorphic SEAL-Embedded Library
    Di Matteo, Stefano
    Lo Gerfo, Matteo
    Saponara, Sergio
    IEEE ACCESS, 2023, 11 : 72498 - 72508
  • [25] A FPGA based C runtime hardware accelerator
    Garcia, P.
    Salgado, F.
    Cardoso, P.
    Cabral, J.
    Ekpanyapong, M.
    Tavares, A.
    2011 9TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2011,
  • [26] eSSpMV: An Embedded-FPGA-based Hardware Accelerator for Symmetric Sparse Matrix-Vector Multiplication
    Chen, Ruiqi
    Zhang, Haoyang
    Ma, Yuhanxiao
    Chen, Jianli
    Yu, Jun
    Wang, Kun
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [27] BSTMSM: A High-Performance FPGA-based Multi-Scalar Multiplication Hardware Accelerator
    Zhao, Baoze
    Huang, Wenjin
    Li, Tianrui
    Huang, Yihua
    2023 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY, ICFPT, 2023, : 35 - 43
  • [28] A Comparative Analysis between Karatsuba, Toom-Cook and NTT Multiplier for Polynomial Multiplication in NTRU on FPGA
    Allam, Harish Prasad
    Mandal, Suraj
    Roy, Debapriya Basu
    2023 ASIAN HARDWARE ORIENTED SECURITY AND TRUST SYMPOSIUM, ASIANHOST, 2023,
  • [29] A Fast and Efficient FPGA-based Level Set Hardware Accelerator for Image Segmentation
    Liu Ye
    Xiao Jianbiao
    Wu Fei
    Chang Liang
    Zhou Jun
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (06) : 1525 - 1532
  • [30] An FPGA-Based Hardware Accelerator for Energy-Efficient Bitmap Index Creation
    Xuan-Thuan Nguyen
    Trong-Thuc Hoang
    Hong-Thu Nguyen
    Katsumi Inoue
    Cong-Kha Pham
    IEEE ACCESS, 2018, 6 : 16046 - 16059