Ward identities for superamplitudes

被引:1
|
作者
Kallosh, Renata [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
基金
美国国家科学基金会;
关键词
Extended Supersymmetry; Field Theories in Higher Dimensions; Supergravity Models; COUNTERTERMS;
D O I
10.1007/JHEP06(2024)035
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce Ward identities for superamplitudes in D-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}-extended supergravities. These identities help to clarify the relation between linearized superinvariants and superamplitudes. The solutions of these Ward identities for an n-partice superamplitude take a simple universal form for half BPS and non-BPS amplitudes. These solutions involve arbitrary functions of spinor helicity and Grassmann variables for each of the n superparticles. The dimension of these functions at a given loop order is exactly the same as the dimension of the relevant superspace Lagrangians depending on half-BPS or non-BPS superfields, given by (D - 2)L + 2 - N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} or (D - 2)L + 2 - 2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2\mathcal{N} $$\end{document}, respectively. This explains why soft limits predictions from superamplitudes and from superspace linearized superinvariants agree.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] SUPERCONFORMAL WARD IDENTITIES AND THE WZW MODEL
    FUCHS, J
    NUCLEAR PHYSICS B, 1987, 286 (02) : 455 - 484
  • [42] SYMMETRIES AND WARD IDENTITIES IN STOCHASTIC QUANTIZATION
    PUGNETTI, S
    PHYSICS LETTERS B, 1987, 188 (04) : 465 - 468
  • [43] RANDOM NORMAL MATRICES AND WARD IDENTITIES
    Ameur, Yacin
    Hedenmalm, Haakan
    Makarov, Nikolai
    ANNALS OF PROBABILITY, 2015, 43 (03): : 1157 - 1201
  • [44] VACUUM WARD IDENTITIES FOR HIGHER GENERA
    ZAMOLODCHIKOV, AB
    NUCLEAR PHYSICS B, 1989, 316 (03) : 573 - 589
  • [45] Ward identities for disordered metals and superconductors
    Ramazashvili, R
    PHYSICAL REVIEW B, 2002, 66 (22): : 1 - 4
  • [46] Celestial superamplitudes
    Brandhuber, Andreas
    Brown, Graham R.
    Gowdy, Joshua
    Spence, Bill
    Travaglini, Gabriele
    PHYSICAL REVIEW D, 2021, 104 (04)
  • [47] LOCAL AND GLOBAL INTEGRABILITY OF ANOMALOUS WARD IDENTITIES
    ROSSI, GC
    TESTA, M
    YOSHIDA, K
    PHYSICS LETTERS B, 1984, 134 (1-2) : 78 - 80
  • [48] WARD IDENTITIES AND CHIRAL ANOMALIES IN STOCHASTIC QUANTIZATION
    GAVELA, MB
    PARGA, N
    NUCLEAR PHYSICS B, 1986, 275 (03) : 546 - 559
  • [49] W-3 WARD IDENTITIES ON A TORUS
    CHANG, CH
    HUANG, CS
    LI, LX
    PHYSICS LETTERS B, 1991, 259 (03) : 267 - 273
  • [50] WARD-TAKAHASHI IDENTITIES IN QUANTUM ELECTRODYNAMICS
    NISHIJIMA, K
    SASAKI, R
    PROGRESS OF THEORETICAL PHYSICS, 1975, 53 (03): : 829 - 841