Ward identities for superamplitudes

被引:1
|
作者
Kallosh, Renata [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 06期
基金
美国国家科学基金会;
关键词
Extended Supersymmetry; Field Theories in Higher Dimensions; Supergravity Models; COUNTERTERMS;
D O I
10.1007/JHEP06(2024)035
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce Ward identities for superamplitudes in D-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}-extended supergravities. These identities help to clarify the relation between linearized superinvariants and superamplitudes. The solutions of these Ward identities for an n-partice superamplitude take a simple universal form for half BPS and non-BPS amplitudes. These solutions involve arbitrary functions of spinor helicity and Grassmann variables for each of the n superparticles. The dimension of these functions at a given loop order is exactly the same as the dimension of the relevant superspace Lagrangians depending on half-BPS or non-BPS superfields, given by (D - 2)L + 2 - N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} or (D - 2)L + 2 - 2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2\mathcal{N} $$\end{document}, respectively. This explains why soft limits predictions from superamplitudes and from superspace linearized superinvariants agree.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Ward identities for invariant group integrals
    Uhlmann, S.
    Meinel, R.
    Wipf, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (16) : 4367 - 4389
  • [32] WARD IDENTITIES FOR LOCAL GAUGE SYMMETRIES
    QUARANTA, L
    ROUET, A
    STORA, R
    TIRAPEGU.E
    LETTERE AL NUOVO CIMENTO, 1972, 5 (17): : 1104 - 1104
  • [33] NONLOCAL-SYMMETRY WARD IDENTITIES
    CURTRIGHT, TL
    ZACHOS, CK
    PHYSICAL REVIEW D, 1981, 24 (10): : 2661 - 2668
  • [34] 2-BODY WARD IDENTITIES
    BENTZ, W
    NUCLEAR PHYSICS A, 1985, 446 (3-4) : 678 - 702
  • [35] Issues about cosmological Ward identities
    Kaya, Ali
    PHYSICAL REVIEW D, 2018, 97 (06)
  • [36] On logarithmic solutions to the conformal Ward identities
    Rasmussen, J
    NUCLEAR PHYSICS B, 2005, 730 (03) : 300 - 311
  • [37] Ward identities for interacting electronic systems
    Nieh, HT
    Sheng, P
    Wang, XB
    PHYSICS LETTERS A, 1998, 246 (06) : 542 - 548
  • [38] Trace anomalies and chiral ward identities
    Yang, JF
    CHINESE PHYSICS LETTERS, 2004, 21 (05) : 792 - 794
  • [39] SUPERSYMMETRIC WARD IDENTITIES IN QUANTUM DIFFUSION
    Disertori, Margherita
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 357 - 361
  • [40] Ward identities for amplitudes with Reggeized gluons
    Bartels, J.
    Lipatov, L. N.
    Vacca, G. P.
    PHYSICAL REVIEW D, 2012, 86 (10):