Ward identities for superamplitudes

被引:1
|
作者
Kallosh, Renata [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
基金
美国国家科学基金会;
关键词
Extended Supersymmetry; Field Theories in Higher Dimensions; Supergravity Models; COUNTERTERMS;
D O I
10.1007/JHEP06(2024)035
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce Ward identities for superamplitudes in D-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}-extended supergravities. These identities help to clarify the relation between linearized superinvariants and superamplitudes. The solutions of these Ward identities for an n-partice superamplitude take a simple universal form for half BPS and non-BPS amplitudes. These solutions involve arbitrary functions of spinor helicity and Grassmann variables for each of the n superparticles. The dimension of these functions at a given loop order is exactly the same as the dimension of the relevant superspace Lagrangians depending on half-BPS or non-BPS superfields, given by (D - 2)L + 2 - N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} or (D - 2)L + 2 - 2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2\mathcal{N} $$\end{document}, respectively. This explains why soft limits predictions from superamplitudes and from superspace linearized superinvariants agree.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] CONSEQUENCES OF ANOMALOUS WARD IDENTITIES
    WESS, J
    ZUMINO, B
    PHYSICS LETTERS B, 1971, B 37 (01) : 95 - &
  • [12] Ward identities in nonequilibrium QED
    Carrington, ME
    Hou, DF
    Thoma, MH
    PHYSICAL REVIEW D, 1998, 58 (08):
  • [13] WARD IDENTITIES FOR NONCOMMUTATIVE GEOMETRY
    JAFFE, A
    OSTERWALDER, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) : 119 - 130
  • [14] The supersymmetric Ward identities on the lattice
    F. Farchioni
    C. Gebert
    R. Kirchner
    I. Montvay
    A. Feo
    G. Münster
    T. Galla
    A. Vladikas
    The European Physical Journal C - Particles and Fields, 2002, 23 : 719 - 734
  • [15] INTERPRETATION OF ANOMALIES IN WARD IDENTITIES
    KUMMER, W
    SCHWEDA, M
    NUCLEAR PHYSICS B, 1970, B 22 (02) : 412 - &
  • [16] The supersymmetric Ward identities on the lattice
    Farchioni, F
    Gebert, C
    Kirchner, R
    Montvay, I
    Feo, A
    Münster, G
    Galla, T
    Vladikas, A
    EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (04): : 719 - 734
  • [17] Generalized Canonical Ward Identities
    Wang, Yong-Long
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (05) : 1422 - 1430
  • [18] Ward identities for Hall transport
    Hoyos, Carlos
    Kim, Bom Soo
    Oz, Yaron
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10):
  • [19] SUPERCONFORMAL WARD IDENTITIES AND THE SUPERTORUS
    GRUNDBERG, J
    NAKAYAMA, R
    NUCLEAR PHYSICS B, 1988, 306 (03) : 497 - 515
  • [20] DIVERGENT VERTICES AND WARD IDENTITIES
    WILSON, KG
    PHYSICAL REVIEW, 1969, 181 (05): : 1909 - &