Ward identities for superamplitudes

被引:1
|
作者
Kallosh, Renata [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
基金
美国国家科学基金会;
关键词
Extended Supersymmetry; Field Theories in Higher Dimensions; Supergravity Models; COUNTERTERMS;
D O I
10.1007/JHEP06(2024)035
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce Ward identities for superamplitudes in D-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}-extended supergravities. These identities help to clarify the relation between linearized superinvariants and superamplitudes. The solutions of these Ward identities for an n-partice superamplitude take a simple universal form for half BPS and non-BPS amplitudes. These solutions involve arbitrary functions of spinor helicity and Grassmann variables for each of the n superparticles. The dimension of these functions at a given loop order is exactly the same as the dimension of the relevant superspace Lagrangians depending on half-BPS or non-BPS superfields, given by (D - 2)L + 2 - N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} or (D - 2)L + 2 - 2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2\mathcal{N} $$\end{document}, respectively. This explains why soft limits predictions from superamplitudes and from superspace linearized superinvariants agree.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Solution to the Ward identities for superamplitudes
    Henriette Elvang
    Daniel Z. Freedman
    Michael Kiermaier
    Journal of High Energy Physics, 2010
  • [2] Solution to the Ward identities for superamplitudes
    Elvang, Henriette
    Freedman, Daniel Z.
    Kiermaier, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [3] SUSY Ward identities, superamplitudes and counterterms
    Elvang, Henriette
    Freedman, Daniel Z.
    Kiermaier, Michael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (45)
  • [4] Wilsonian ward identities
    Oliver J. Rosten
    The European Physical Journal C, 2019, 79
  • [5] ON VALIDITY OF WARD IDENTITIES
    STICHEL, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (04) : 275 - &
  • [6] Wilsonian ward identities
    Rosten, Oliver J.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (02):
  • [7] A note on holographic Ward identities
    Corley, S
    PHYSICS LETTERS B, 2000, 484 (1-2) : 141 - 148
  • [8] Generalized Canonical Ward Identities
    Yong-Long Wang
    International Journal of Theoretical Physics, 2009, 48
  • [9] Ward identities at finite temperature
    DOlivo, JC
    Torres, M
    Tututi, E
    WORKSHOPS ON PARTICLES AND FIELDS AND PHENOMENOLOGY OF FUNDAMENTAL INTERACTIONS, 1996, (359): : 471 - 474
  • [10] Lattice supersymmetric ward identities
    Farchioni, F
    Feo, A
    Galla, T
    Gebert, C
    Kirchner, R
    Montvay, I
    Münster, G
    Vladikas, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 938 - 940