Subgroup total perfect codes in Cayley sum graphs

被引:2
|
作者
Wang, Xiaomeng [1 ]
Wei, Lina [1 ]
Xu, Shou-Jun [1 ]
Zhou, Sanming [2 ]
机构
[1] Lanzhou Univ, Gansu Ctr Appl Math, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Cayley sum graph; Total perfect code; Regular set; Dihedral group; Generalized quaternion group; DOMINATION SETS;
D O I
10.1007/s10623-024-01405-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a graph with vertex set V, and let a, b be nonnegative integers. An (a, b)-regular set in Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a nonempty proper subset D of V such that every vertex in D has exactly a neighbours in D and every vertex in V\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \setminus D$$\end{document} has exactly b neighbours in D. In particular, a (1, 1)-regular set is called a total perfect code. Let G be a finite group and S a square-free subset of G closed under conjugation. The Cayley sum graph CayS(G,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{CayS}(G,S)$$\end{document} of G is the graph with vertex set G such that two vertices x, y are adjacent if and only if xy is an element of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy \in S$$\end{document}. A subset (respectively, subgroup) D of G is called an (a, b)-regular set (respectively, subgroup (a, b)-regular set) of G if there exists a Cayley sum graph of G which admits D as an (a, b)-regular set. We obtain two necessary and sufficient conditions for a subgroup of a finite group G to be a total perfect code in a Cayley sum graph of G. We also obtain two necessary and sufficient conditions for a subgroup of a finite abelian group G to be a total perfect code of G. We classify finite abelian groups whose all non-trivial subgroups of even order are total perfect codes of the group, and as a corollary we obtain that a finite abelian group has the property that every non-trivial subgroup is a total perfect code if and only if it is isomorphic to an elementary abelian 2-group. We prove that, for a subgroup H of a finite abelian group G and any pair of positive integers (a, b) within certain ranges depending on H, H is an (a, b)-regular set of G if and only if it is a total perfect code of G. Finally, we give a classification of subgroup total perfect codes of a cyclic group, a dihedral group and a generalized quaternion group.
引用
收藏
页码:2599 / 2613
页数:15
相关论文
共 50 条
  • [41] Perfect codes in m-Cayley hypergraphs
    Wannatong, Kantapong
    Meemark, Yotsanan
    DISCRETE APPLIED MATHEMATICS, 2024, 358 : 105 - 111
  • [42] Sum-perfect graphs
    Litjens, Bart
    Polak, Sven
    Sivaraman, Vaidy
    DISCRETE APPLIED MATHEMATICS, 2019, 259 : 232 - 239
  • [43] \ Invariant random perfect matchings in Cayley graphs
    Csoka, Endre
    Lippner, Gabor
    GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (01) : 211 - 243
  • [44] Perfect state transfer on abelian Cayley graphs
    Tan, Ying-Ying
    Feng, Keqin
    Cao, Xiwang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 331 - 352
  • [45] Independent perfect domination sets in Cayley graphs
    Lee, J
    JOURNAL OF GRAPH THEORY, 2001, 37 (04) : 213 - 219
  • [46] On Cayley sum signed graphs-II
    Sharma, Deepakshi
    Somra, Sachin
    Sinha, Deepa
    AFRIKA MATEMATIKA, 2024, 35 (03)
  • [47] CAYLEY SUM GRAPHS OF IDEALS OF A COMMUTATIVE RING
    Afkhami, M.
    Barati, Z.
    Khashyarmanesh, K.
    Paknejad, N.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (03) : 289 - 302
  • [48] Perfect codes in Doob graphs
    Denis S. Krotov
    Designs, Codes and Cryptography, 2016, 80 : 91 - 102
  • [49] PERFECT CODES OVER GRAPHS
    KRATOCHVIL, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 40 (02) : 224 - 228
  • [50] Cyclotomic graphs and perfect codes
    Zhou, Sanming
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 931 - 947