Subgroup total perfect codes in Cayley sum graphs

被引:2
|
作者
Wang, Xiaomeng [1 ]
Wei, Lina [1 ]
Xu, Shou-Jun [1 ]
Zhou, Sanming [2 ]
机构
[1] Lanzhou Univ, Gansu Ctr Appl Math, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Cayley sum graph; Total perfect code; Regular set; Dihedral group; Generalized quaternion group; DOMINATION SETS;
D O I
10.1007/s10623-024-01405-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a graph with vertex set V, and let a, b be nonnegative integers. An (a, b)-regular set in Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a nonempty proper subset D of V such that every vertex in D has exactly a neighbours in D and every vertex in V\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \setminus D$$\end{document} has exactly b neighbours in D. In particular, a (1, 1)-regular set is called a total perfect code. Let G be a finite group and S a square-free subset of G closed under conjugation. The Cayley sum graph CayS(G,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{CayS}(G,S)$$\end{document} of G is the graph with vertex set G such that two vertices x, y are adjacent if and only if xy is an element of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy \in S$$\end{document}. A subset (respectively, subgroup) D of G is called an (a, b)-regular set (respectively, subgroup (a, b)-regular set) of G if there exists a Cayley sum graph of G which admits D as an (a, b)-regular set. We obtain two necessary and sufficient conditions for a subgroup of a finite group G to be a total perfect code in a Cayley sum graph of G. We also obtain two necessary and sufficient conditions for a subgroup of a finite abelian group G to be a total perfect code of G. We classify finite abelian groups whose all non-trivial subgroups of even order are total perfect codes of the group, and as a corollary we obtain that a finite abelian group has the property that every non-trivial subgroup is a total perfect code if and only if it is isomorphic to an elementary abelian 2-group. We prove that, for a subgroup H of a finite abelian group G and any pair of positive integers (a, b) within certain ranges depending on H, H is an (a, b)-regular set of G if and only if it is a total perfect code of G. Finally, we give a classification of subgroup total perfect codes of a cyclic group, a dihedral group and a generalized quaternion group.
引用
收藏
页码:2599 / 2613
页数:15
相关论文
共 50 条
  • [21] ON SUBGROUP PERFECT CODES IN VERTEX-TRANSITIVE GRAPHS
    Xia, Binzhou
    Zhang, Junyang
    Zhang, Zhishuo
    arXiv,
  • [22] The Cayley Graphs Associated With Some Quasi-Perfect Lee Codes Are Ramanujan Graphs
    Bibak, Khodakhast
    Kapron, Bruce M.
    Srinivasan, Venkatesh
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6355 - 6358
  • [23] Total perfect codes in tensor products of graphs
    Abay-Asmerom, Ghidewon
    Hammack, Richard H.
    Taylor, Dewey T.
    ARS COMBINATORIA, 2008, 88 : 129 - 134
  • [24] Spectra of twists of Cayley and Cayley sum graphs
    Biswas, Arindam
    Saha, Jyoti Prakash
    ADVANCES IN APPLIED MATHEMATICS, 2022, 132
  • [25] On integral Cayley sum graphs
    Marzieh Amooshahi
    Bijan Taeri
    Indian Journal of Pure and Applied Mathematics, 2016, 47 : 583 - 601
  • [26] On the subgraphs of Cayley sum graphs
    Zhang, Jun -Yang
    Yang, Yue-Yue
    DISCRETE MATHEMATICS, 2023, 346 (08)
  • [27] Quasi-Perfect Codes From Cayley Graphs Over Integer Rings
    Queiroz, Catia Quilles
    Camarero, Cristobal
    Martinez, Carmen
    Palazzo, Reginaldo, Jr.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5905 - 5916
  • [28] ON INTEGRAL CAYLEY SUM GRAPHS
    Amooshahi, Marzieh
    Taeri, Bijan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (04): : 583 - 601
  • [29] TOTAL PERFECT CODES IN GRAPHS REALIZED BY COMMUTATIVE RINGS
    Raja, Rameez
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (04) : 295 - 307
  • [30] TOTAL PERFECT CODES, OO-IRREDUNDANT AND TOTAL SUBDIVISION IN GRAPHS
    Hosseinzadeh, H.
    Soltankhah, N.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03): : 499 - 506