Subgroup total perfect codes in Cayley sum graphs

被引:2
|
作者
Wang, Xiaomeng [1 ]
Wei, Lina [1 ]
Xu, Shou-Jun [1 ]
Zhou, Sanming [2 ]
机构
[1] Lanzhou Univ, Gansu Ctr Appl Math, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Cayley sum graph; Total perfect code; Regular set; Dihedral group; Generalized quaternion group; DOMINATION SETS;
D O I
10.1007/s10623-024-01405-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a graph with vertex set V, and let a, b be nonnegative integers. An (a, b)-regular set in Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a nonempty proper subset D of V such that every vertex in D has exactly a neighbours in D and every vertex in V\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \setminus D$$\end{document} has exactly b neighbours in D. In particular, a (1, 1)-regular set is called a total perfect code. Let G be a finite group and S a square-free subset of G closed under conjugation. The Cayley sum graph CayS(G,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{CayS}(G,S)$$\end{document} of G is the graph with vertex set G such that two vertices x, y are adjacent if and only if xy is an element of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy \in S$$\end{document}. A subset (respectively, subgroup) D of G is called an (a, b)-regular set (respectively, subgroup (a, b)-regular set) of G if there exists a Cayley sum graph of G which admits D as an (a, b)-regular set. We obtain two necessary and sufficient conditions for a subgroup of a finite group G to be a total perfect code in a Cayley sum graph of G. We also obtain two necessary and sufficient conditions for a subgroup of a finite abelian group G to be a total perfect code of G. We classify finite abelian groups whose all non-trivial subgroups of even order are total perfect codes of the group, and as a corollary we obtain that a finite abelian group has the property that every non-trivial subgroup is a total perfect code if and only if it is isomorphic to an elementary abelian 2-group. We prove that, for a subgroup H of a finite abelian group G and any pair of positive integers (a, b) within certain ranges depending on H, H is an (a, b)-regular set of G if and only if it is a total perfect code of G. Finally, we give a classification of subgroup total perfect codes of a cyclic group, a dihedral group and a generalized quaternion group.
引用
收藏
页码:2599 / 2613
页数:15
相关论文
共 50 条
  • [31] Subgroup regular sets in Cayley graphs
    Wang, Yanpeng
    Xia, Binzhou
    Zhou, Sanming
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [32] Perfect directed codes in Cayley digraphs
    Wang, Yan
    Yuan, Kai
    Zhao, Ying
    AIMS MATHEMATICS, 2024, 9 (09): : 23878 - 23889
  • [33] Perfect domination sets in Cayley graphs
    Kwon, Young Soo
    Lee, Jaeun
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 259 - 263
  • [34] On regular sets in Cayley sum graphs
    Zhang, Junyang
    Yuan, Wei
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [35] Cayley sum graphs and their applications to codebooks
    Satake, Shohei
    Gu, Yujie
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 91 (4) : 1315 - 1333
  • [36] Regular Sets in Cayley Sum Graphs
    Seiedali, Fateme Sadat
    Khosravi, Behrooz
    Akhlaghi, Zeinab
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (02)
  • [37] INTEGRAL CAYLEY SUM GRAPHS AND GROUPS
    Ma, Xuanlong
    Wang, Kaishun
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) : 797 - 803
  • [38] On subgraphs of random Cayley sum graphs
    Konyagin, S. V.
    Shkredov, I. D.
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 : 61 - 74
  • [39] ON THE DOMINATION AND TOTAL DOMINATION NUMBERS OF CAYLEY SUM GRAPHS OVER Z(n)
    Amooshahi, M.
    Taeri, B.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (02): : 315 - 320
  • [40] Cayley sum graphs and their applications to codebooks
    Shohei Satake
    Yujie Gu
    Designs, Codes and Cryptography, 2023, 91 : 1315 - 1333