Subgroup total perfect codes in Cayley sum graphs

被引:2
|
作者
Wang, Xiaomeng [1 ]
Wei, Lina [1 ]
Xu, Shou-Jun [1 ]
Zhou, Sanming [2 ]
机构
[1] Lanzhou Univ, Gansu Ctr Appl Math, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Cayley sum graph; Total perfect code; Regular set; Dihedral group; Generalized quaternion group; DOMINATION SETS;
D O I
10.1007/s10623-024-01405-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a graph with vertex set V, and let a, b be nonnegative integers. An (a, b)-regular set in Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a nonempty proper subset D of V such that every vertex in D has exactly a neighbours in D and every vertex in V\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \setminus D$$\end{document} has exactly b neighbours in D. In particular, a (1, 1)-regular set is called a total perfect code. Let G be a finite group and S a square-free subset of G closed under conjugation. The Cayley sum graph CayS(G,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{CayS}(G,S)$$\end{document} of G is the graph with vertex set G such that two vertices x, y are adjacent if and only if xy is an element of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy \in S$$\end{document}. A subset (respectively, subgroup) D of G is called an (a, b)-regular set (respectively, subgroup (a, b)-regular set) of G if there exists a Cayley sum graph of G which admits D as an (a, b)-regular set. We obtain two necessary and sufficient conditions for a subgroup of a finite group G to be a total perfect code in a Cayley sum graph of G. We also obtain two necessary and sufficient conditions for a subgroup of a finite abelian group G to be a total perfect code of G. We classify finite abelian groups whose all non-trivial subgroups of even order are total perfect codes of the group, and as a corollary we obtain that a finite abelian group has the property that every non-trivial subgroup is a total perfect code if and only if it is isomorphic to an elementary abelian 2-group. We prove that, for a subgroup H of a finite abelian group G and any pair of positive integers (a, b) within certain ranges depending on H, H is an (a, b)-regular set of G if and only if it is a total perfect code of G. Finally, we give a classification of subgroup total perfect codes of a cyclic group, a dihedral group and a generalized quaternion group.
引用
收藏
页码:2599 / 2613
页数:15
相关论文
共 50 条
  • [1] On subgroup perfect codes in Cayley sum graphs
    Zhang, Junyang
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 95
  • [2] Subgroup perfect codes in Cayley sum graphs
    Xuanlong Ma
    Min Feng
    Kaishun Wang
    Designs, Codes and Cryptography, 2020, 88 : 1447 - 1461
  • [3] Subgroup perfect codes in Cayley sum graphs
    Ma, Xuanlong
    Feng, Min
    Wang, Kaishun
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (07) : 1447 - 1461
  • [4] On subgroup perfect codes in Cayley sum graphs
    Zhang, Jun-Yang
    arXiv, 2022,
  • [5] Subgroup perfect codes in cayley graphs
    Ma, Xuanlong
    Walls, Gary L.
    Wang, Kaishun
    Zhou, Sanming
    arXiv, 2019,
  • [6] On the subgroup perfect codes in Cayley graphs
    Yasamin Khaefi
    Zeinab Akhlaghi
    Behrooz Khosravi
    Designs, Codes and Cryptography, 2023, 91 : 55 - 61
  • [7] On subgroup perfect codes in Cayley graphs
    Zhang, Junyang
    Zhou, Sanming
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 91
  • [8] On the subgroup perfect codes in Cayley graphs
    Khaefi, Yasamin
    Akhlaghi, Zeinab
    Khosravi, Behrooz
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 55 - 61
  • [9] SUBGROUP PERFECT CODES IN CAYLEY GRAPHS
    Ma, Xuanlong
    Walls, Gary L.
    Wang, Kaishun
    Zhou, Sanming
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) : 1909 - 1921
  • [10] Perfect codes in Cayley sum graphs
    Ma, Xuanlong
    Wang, Kaishun
    Yang, Yuefeng
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):