Modeling and prediction of children’s growth data via functional principal component analysis

被引:0
|
作者
HU YuHE XuMingTAO Jian SHI NingZhong Key Laboratory for Applied Statistics of MOESchool of Mathematics and StatisticsNortheast Normal UniversityChangchun China Department of StatisticsUniversity of Illinois at UrbanaChampaign South Wright StreetChampaignIL USA [1 ,2 ,1 ,1 ,1 ,130024 ,2 ,725 ,61820 ]
机构
关键词
D O I
暂无
中图分类号
O213 [应用统计数学];
学科分类号
摘要
We use the functional principal component analysis(FPCA) to model and predict the weight growth in children.In particular,we examine how the approach can help discern growth patterns of underweight children relative to their normal counterparts,and whether a commonly used transformation to normality plays any constructive roles in a predictive model based on the FPCA.Our work supplements the conditional growth charts developed by Wei and He(2006) by constructing a predictive growth model based on a small number of principal components scores on individual's past.
引用
收藏
页码:1342 / 1350
页数:9
相关论文
共 50 条
  • [41] Functional principal component analysis for identifying the child growth pattern using longitudinal birth cohort data
    Reka Karuppusami
    Belavendra Antonisamy
    Prasanna S. Premkumar
    BMC Medical Research Methodology, 22
  • [42] ADAPTIVE FUNCTIONAL LINEAR REGRESSION VIA FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS AND BLOCK THRESHOLDING
    Cai, T. Tony
    Zhang, Linjun
    Zhou, Harrison H.
    STATISTICA SINICA, 2018, 28 (04) : 2455 - 2468
  • [43] Robust functional principal component analysis via a functional pairwise spatial sign operator
    Wang, Guangxing
    Liu, Sisheng
    Han, Fang
    Di, Chong-Zhi
    BIOMETRICS, 2023, 79 (02) : 1239 - 1253
  • [44] Multilevel Functional Principal Component Analysis for High-Dimensional Data
    Zipunnikov, Vadim
    Caffo, Brian
    Yousem, David M.
    Davatzikos, Christos
    Schwartz, Brian S.
    Crainiceanu, Ciprian
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 852 - 873
  • [45] Spatial functional principal component analysis with applications to brain image data
    Li, Yingxing
    Huang, Chen
    Haerdle, Wolfgang K.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 : 263 - 274
  • [46] Functional principal component analysis estimator for non-Gaussian data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (13) : 2788 - 2801
  • [47] Parameter clustering in Bayesian functional principal component analysis of neuroscientific data
    Margaritella, Nicolo
    Inacio, Vanda
    King, Ruth
    STATISTICS IN MEDICINE, 2021, 40 (01) : 167 - 184
  • [48] Functional principal component analysis for incomplete space-time data
    Palummo, Alessandro
    Arnone, Eleonora
    Formaggia, Luca
    Sangalli, Laura M.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2024, 31 (02) : 555 - 582
  • [49] Multilevel Functional Principal Component Analysis of Facade Sound Insulation Data
    Argiento, Raffaele
    Bissiri, Pier Giovanni
    Pievatolo, Antonio
    Scrosati, Chiara
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2015, 31 (07) : 1239 - 1253
  • [50] Data selection in principal component analysis for power plant boiler modeling
    Qiu, Tian
    Liu, Ji-Zhen
    Niu, Yu-Guang
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2009, 29 (08): : 87 - 91