Multilevel Functional Principal Component Analysis for High-Dimensional Data

被引:56
|
作者
Zipunnikov, Vadim [1 ]
Caffo, Brian [1 ]
Yousem, David M. [2 ]
Davatzikos, Christos [3 ]
Schwartz, Brian S. [4 ]
Crainiceanu, Ciprian [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Dept Radiol, Baltimore, MD 21205 USA
[3] Univ Penn, Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[4] Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
关键词
Brain imaging data; MRI; Voxel-based morphology; VOXEL-BASED MORPHOMETRY; COGNITIVE FUNCTION; LEAD-EXPOSURE; BRAIN VOLUMES; ASSOCIATIONS; WORKERS; MODELS;
D O I
10.1198/jcgs.2011.10122
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high-dimensional vectors observed at multiple visits. The proposed inferential methods do not require loading the entire dataset at once in the computer memory and instead use only sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large datasets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possess over ten billion measurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely observed functions and images. Supplemental materials are provided with source code for simulations, some technical details and proofs, and additional imaging results of the brain study.
引用
收藏
页码:852 / 873
页数:22
相关论文
共 50 条
  • [1] Principal component analysis for sparse high-dimensional data
    Raiko, Tapani
    Ilin, Alexander
    Karhunen, Juha
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 566 - 575
  • [2] On principal component analysis for high-dimensional XCSR
    Behdad, Mohammad
    French, Tim
    Barone, Luigi
    Bennamoun, Mohammed
    EVOLUTIONARY INTELLIGENCE, 2012, 5 (02) : 129 - 138
  • [3] Functional principal component model for high-dimensional brain imaging
    Zipunnikov, Vadim
    Caffo, Brian
    Yousem, David M.
    Davatzikos, Christos
    Schwartz, Brian S.
    Crainiceanu, Ciprian
    NEUROIMAGE, 2011, 58 (03) : 772 - 784
  • [4] Cauchy robust principal component analysis with applications to high-dimensional data sets
    Fayomi, Aisha
    Pantazis, Yannis
    Tsagris, Michail
    Wood, Andrew T. A.
    STATISTICS AND COMPUTING, 2024, 34 (01)
  • [5] Exploring high-dimensional biological data with sparse contrastive principal component analysis
    Boileau, Philippe
    Hejazi, Nima S.
    Dudoit, Sandrine
    BIOINFORMATICS, 2020, 36 (11) : 3422 - 3430
  • [6] Adaptive local Principal Component Analysis improves the clustering of high-dimensional data
    Migenda, Nico
    Moeller, Ralf
    Schenck, Wolfram
    PATTERN RECOGNITION, 2024, 146
  • [7] Cauchy robust principal component analysis with applications to high-dimensional data sets
    Aisha Fayomi
    Yannis Pantazis
    Michail Tsagris
    Andrew T. A. Wood
    Statistics and Computing, 2024, 34
  • [8] High-dimensional principal component analysis with heterogeneous missingness
    Zhu, Ziwei
    Wang, Tengyao
    Samworth, Richard J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (05) : 2000 - 2031
  • [9] Test for high-dimensional outliers with principal component analysis
    Nakayama, Yugo
    Yata, Kazuyoshi
    Aoshima, Makoto
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (02) : 739 - 766
  • [10] PRINCIPAL COMPONENT ANALYSIS IN VERY HIGH-DIMENSIONAL SPACES
    Lee, Young Kyung
    Lee, Eun Ryung
    Park, Byeong U.
    STATISTICA SINICA, 2012, 22 (03) : 933 - 956