Modeling and prediction of children’s growth data via functional principal component analysis

被引:0
|
作者
HU YuHE XuMingTAO Jian SHI NingZhong Key Laboratory for Applied Statistics of MOESchool of Mathematics and StatisticsNortheast Normal UniversityChangchun China Department of StatisticsUniversity of Illinois at UrbanaChampaign South Wright StreetChampaignIL USA [1 ,2 ,1 ,1 ,1 ,130024 ,2 ,725 ,61820 ]
机构
关键词
D O I
暂无
中图分类号
O213 [应用统计数学];
学科分类号
摘要
We use the functional principal component analysis(FPCA) to model and predict the weight growth in children.In particular,we examine how the approach can help discern growth patterns of underweight children relative to their normal counterparts,and whether a commonly used transformation to normality plays any constructive roles in a predictive model based on the FPCA.Our work supplements the conditional growth charts developed by Wei and He(2006) by constructing a predictive growth model based on a small number of principal components scores on individual's past.
引用
收藏
页码:1342 / 1350
页数:9
相关论文
共 50 条
  • [21] Mean residual life regression with functional principal component analysis on longitudinal data for dynamic prediction
    Lin, Xiao
    Lu, Tao
    Yan, Fangrong
    Li, Ruosha
    Huang, Xuelin
    BIOMETRICS, 2018, 74 (04) : 1482 - 1491
  • [22] Quantile residual lifetime regression with functional principal component analysis of longitudinal data for dynamic prediction
    Lin, Xiao
    Li, Ruosha
    Yan, Fangrong
    Lu, Tao
    Huang, Xuelin
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (04) : 1216 - 1229
  • [23] FILTRATED COMMON FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS OF MULTIGROUP FUNCTIONAL DATA
    Jiao, Shuhao
    Frostig, Ron
    Ombao, Hernando
    ANNALS OF APPLIED STATISTICS, 2024, 18 (02): : 1160 - 1177
  • [24] S-Estimators for Functional Principal Component Analysis
    Boente, Graciela
    Salibian-Barrera, Matias
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (511) : 1100 - 1111
  • [25] REGRESSION BASED PRINCIPAL COMPONENT ANALYSIS FOR SPARSE FUNCTIONAL DATA WITH APPLICATIONS TO SCREENING GROWTH PATHS
    Zhang, Wenfei
    Wei, Ying
    ANNALS OF APPLIED STATISTICS, 2015, 9 (02): : 597 - 620
  • [26] Functional principal component analysis for longitudinal data with informative dropout
    Shi, Haolun
    Dong, Jianghu
    Wang, Liangliang
    Cao, Jiguo
    STATISTICS IN MEDICINE, 2021, 40 (03) : 712 - 724
  • [27] Interpretable principal component analysis for multilevel multivariate functional data
    ZHANG, J. U. N.
    SIEGLE, G. R. E. G. J.
    SUN, T. A. O.
    D'ANDREA, W. E. N. D. Y.
    KRAFTY, R. O. B. E. R. T. T.
    BIOSTATISTICS, 2023, 24 (02) : 227 - 243
  • [28] Sparse logistic functional principal component analysis for binary data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    STATISTICS AND COMPUTING, 2023, 33 (01)
  • [29] Functional Principal Component Analysis for Extrapolating Multistream Longitudinal Data
    Chung, Seokhyun
    Kontar, Raed
    IEEE TRANSACTIONS ON RELIABILITY, 2021, 70 (04) : 1321 - 1331
  • [30] Sparse logistic functional principal component analysis for binary data
    Rou Zhong
    Shishi Liu
    Haocheng Li
    Jingxiao Zhang
    Statistics and Computing, 2023, 33