Remark on Voronovskaja theorem for q-Bernstein operators

被引:0
|
作者
Finta, Zoltan [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 Kogalniceanu St, Cluj Napoca 400084, Romania
来源
关键词
Voronovskaja theorem; q-integers; q-Bernstein operators; K-functional; first order Ditzian-Totik modulus of smoothness;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish quantitative Voronovskaja type theorems for the q-Bernstein operators introduced by Phillips in 1997. Our estimates are given with the aid of the first order Ditzian-Totik modulus of smoothness.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 50 条
  • [41] Approximation properties and error estimation of q-Bernstein shifted operators
    Mursaleen, Mohammad
    Ansari, Khursheed J.
    Khan, Asif
    NUMERICAL ALGORITHMS, 2020, 84 (01) : 207 - 227
  • [42] On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ
    Lian-Ta Su
    Reşat Aslan
    Feng-Song Zheng
    M. Mursaleen
    Journal of Inequalities and Applications, 2023
  • [43] On statistical approximation properties of Kantorovich type q-Bernstein operators
    Dalmanoglu, Oezge
    Dogru, Oguen
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 760 - 771
  • [44] Approximation properties and error estimation of q-Bernstein shifted operators
    Mohammad Mursaleen
    Khursheed J. Ansari
    Asif Khan
    Numerical Algorithms, 2020, 84 : 207 - 227
  • [45] A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators
    Kantar, Ulku Dinlemez
    Ergelen, Gizem
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2019, 32 (04): : 1228 - 1236
  • [46] Statistical Approximation Properties of Lupas q-Bernstein Shifted Operators
    Qasim, Mohd
    Mursaleen, M.
    Abbas, Zaheer
    Khan, Asif
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (03): : 1081 - 1090
  • [47] The moments for q-Bernstein operators in the case 0 < q < 1
    Mahmudov, Nazim
    NUMERICAL ALGORITHMS, 2010, 53 (04) : 439 - 450
  • [48] RATE OF A-STATISTICAL APPROXIMATION OF A MODIFIED Q-BERNSTEIN OPERATORS
    Liu, Shenggui
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (03): : 129 - 137
  • [49] Voronovskaja type approximation theorem for q-Szasz-beta operators
    Yuksel, Ismet
    Dinlemez, Ulku
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 : 555 - 559
  • [50] Nonlinear Approximation: q-Bernstein Operators of Max-Product Kind
    Duman, Oktay
    INTELLIGENT MATHEMATICS II: APPLIED MATHEMATICS AND APPROXIMATION THEORY, 2016, 441 : 33 - 56