Remark on Voronovskaja theorem for q-Bernstein operators

被引:0
|
作者
Finta, Zoltan [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 Kogalniceanu St, Cluj Napoca 400084, Romania
来源
关键词
Voronovskaja theorem; q-integers; q-Bernstein operators; K-functional; first order Ditzian-Totik modulus of smoothness;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish quantitative Voronovskaja type theorems for the q-Bernstein operators introduced by Phillips in 1997. Our estimates are given with the aid of the first order Ditzian-Totik modulus of smoothness.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 50 条
  • [31] Stancu type q-Bernstein operators with shifted knots
    M. Mursaleen
    Mohd Qasim
    Asif Khan
    Zaheer Abbas
    Journal of Inequalities and Applications, 2020
  • [32] Phillips-Type q-Bernstein Operators on Triangl
    Khan, Asif
    Mansoori, M. S.
    Khan, Khalid
    Mursaleen, M.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [33] THE DISTANCE BETWEEN TWO LIMIT q-BERNSTEIN OPERATORS
    Ostrovska, Sofiya
    Turan, Mehmet
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (03) : 1085 - 1096
  • [34] SOME APPROXIMATION RESULTS ON MODIFIED q-BERNSTEIN OPERATORS
    Aslan, Resat
    Izgi, Aydin
    JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 11 (01): : 58 - 70
  • [35] The Bernstein Voronovskaja-type theorem for positive linear approximation operators
    Gavrea, Ioan
    Ivan, Mircea
    JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 291 - 296
  • [36] Stancu type q-Bernstein operators with shifted knots
    Mursaleen, M.
    Qasim, Mohd
    Khan, Asif
    Abbas, Zaheer
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [37] RETRACTED: On eigenstructure of q-Bernstein operators (Retracted Article)
    Naaz, Ambreen
    Mursaleen, M.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
  • [38] The norm estimates of the q-Bernstein operators for varying q > 1
    Ostrovska, Sofiya
    Ozban, Ahmet Yasar
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) : 4758 - 4771
  • [39] On generalized Voronovskaja theorem for Bernstein polynomials
    Finta, Zoltan
    CARPATHIAN JOURNAL OF MATHEMATICS, 2012, 28 (02) : 231 - 238
  • [40] On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ
    Su, Lian-Ta
    Aslan, Resat
    Zheng, Feng-Song
    Mursaleen, M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)