Modified (p,q)-Bernstein-Schurer operators and their approximation properties

被引:6
|
作者
Mursaleen, M. [1 ]
Al-Abied, A. [1 ]
Nasiruzzaman, Md. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
COGENT MATHEMATICS | 2016年 / 3卷
关键词
q-integers; (p; q)-integers; Bernstein operator; q)-Bernstein operator; q)-Bernstein-Schurer operator; modulus of continuity; Korovkin's approximation theorem;
D O I
10.1080/23311835.2016.1236534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce modified (p, q)-Bernstein-Schurer operators and discuss their statistical approximation properties based on Korovkin's type approximation theorem. We compute the rate of convergence and also prove a Voronovskaja-type theorem.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Note on q-Bernstein-Schurer operators
    Muraru, Carmen-Violeta
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 489 - 495
  • [42] ON APPROXIMATION TO DISCRETE Q-DERIVATIVES OF FUNCTIONS VIA Q-BERNSTEIN-SCHURER OPERATORS
    Karsli, Harun
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2021, 4 (01): : 15 - 30
  • [43] A new complex generalized Bernstein-Schurer operator
    Cetin, Nursel
    CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (01) : 81 - 89
  • [44] Approximation by (p, q)-Lupas-Schurer-Kantorovich operators
    Kanat, Kadir
    Sofyalioglu, Melek
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [45] On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 12 - 20
  • [46] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    P. N. Agrawal
    Zoltán Finta
    A. Sathish Kumar
    Results in Mathematics, 2015, 67 : 365 - 380
  • [47] q-Bernstein-Schurer-Kantorovich type operators
    Agrawal, P. N.
    Goyal, Meenu
    Kajla, Arun
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 169 - 180
  • [48] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    Agrawal, P. N.
    Finta, Zoltan
    Kumar, A. Sathish
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 365 - 380
  • [49] Approximation by bivariate generalized Bernstein–Schurer operators and associated GBS operators
    S. A. Mohiuddine
    Advances in Difference Equations, 2020
  • [50] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180