On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators

被引:50
|
作者
Cai, Qing-Bo [1 ]
Zhou, Guorong [2 ]
机构
[1] Quanzhon Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
(p q)-integers; Bernstein-Stancu-Schurer operators; A-statistical convergence; Rate of convergence; Lipschitz continuous functions;
D O I
10.1016/j.amc.2015.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new kind of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of (p, q)-integers. We investigate statistical approximation properties and establish a local approximation theorem, we also give a convergence theorem for the Lipschitz continuous functions. Finally, we give some graphics and numerical examples to illustrate the convergence properties of operators to some functions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 50 条
  • [1] Bivariate tensor product (p, q)-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    Xu, Xiao-Wei
    Zhou, Guorong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [2] Approximation properties of Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators
    Mishra, Vishnu Narayan
    Mursaleen, M.
    Pandey, Shikha
    Alotaibi, Abdullah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [3] On the Convergence of a Family of Chlodowsky Type Bernstein-Stancu-Schurer Operators
    Shu, Lian-Ta
    Zhou, Guorong
    Cai, Qing-Bo
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [4] Bivariate Bernstein-Schurer-Stancu type GBS operators in (p,q)-analogue
    Mursaleen, M.
    Ahasan, Mohd.
    Ansari, K. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [5] Approximation properties of Kantorovich-type q-Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (05) : 847 - 859
  • [6] On q-analogue of Bernstein-Schurer-Stancu operators
    Agrawal, P. N.
    Gupta, Vijay
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7754 - 7764
  • [7] q-Bernstein-Schurer-Kantorovich type operators
    Agrawal, P. N.
    Goyal, Meenu
    Kajla, Arun
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 169 - 180
  • [8] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180
  • [9] Kantorovich type q-Bernstein-Stancu operators
    Erencin, Aysegul
    Bascanbaz-Tunca, Gulen
    Tasdelen, Fatma
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (01): : 89 - 105
  • [10] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Chauhan, Ruchi
    Ispir, Nurhayat
    Agrawal, P. N.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,