On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators

被引:50
|
作者
Cai, Qing-Bo [1 ]
Zhou, Guorong [2 ]
机构
[1] Quanzhon Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
(p q)-integers; Bernstein-Stancu-Schurer operators; A-statistical convergence; Rate of convergence; Lipschitz continuous functions;
D O I
10.1016/j.amc.2015.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new kind of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of (p, q)-integers. We investigate statistical approximation properties and establish a local approximation theorem, we also give a convergence theorem for the Lipschitz continuous functions. Finally, we give some graphics and numerical examples to illustrate the convergence properties of operators to some functions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 50 条
  • [21] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    P. N. Agrawal
    Zoltán Finta
    A. Sathish Kumar
    Results in Mathematics, 2015, 67 : 365 - 380
  • [22] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    Agrawal, P. N.
    Finta, Zoltan
    Kumar, A. Sathish
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 365 - 380
  • [23] Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [24] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Tuba Vedi
    Mehmet Ali Özarslan
    Journal of Inequalities and Applications, 2014
  • [25] Approximation properties by Schurer type q-Kantorovich-Stancu shifted knots operators
    Alotaibi, Abdullah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [26] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [27] Convergence of modification of the Kantorovich-type q-Bernstein-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1261 - 1272
  • [28] King Type (p, q)-Bernstein Schurer Operators
    Bawa, Parveen
    Bhardwaj, Neha
    Bhatia, Sumit Kaur
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 431 - 443
  • [29] Stancu-Schurer-Kantorovich operators based on q-integers
    Acu, Ana Maria
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 896 - 907
  • [30] A Kantorovich Type Integral Modification of q- Bernstein-Schurer Operators
    Gairola, Asha Ram
    Mishra, Vishnu Narayan
    Singh, Karunesh Kumar
    FILOMAT, 2018, 32 (04) : 1335 - 1348