q-Bernstein-Schurer-Kantorovich type operators

被引:0
|
作者
Agrawal, P. N. [1 ]
Goyal, Meenu [1 ]
Kajla, Arun [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
来源
关键词
q-Bernstein-Schurer-Kantorovich; Rate of convergence; Modulus of continuity; A-statistical convergence;
D O I
10.1007/s40574-015-0034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to present a Stancu type Kantorovich modification of q-Bernstein-Schurer operators introduced by Muraru (Mathematica LVI 2: 1-11, 2011) and modified by Ren and Zeng (Bull Korean Math Soc 50(4): 1145-1156, 2013). Here, we obtain a convergence theorem by using the well known Bohman-Korovkin criterion and find the estimate of the rate of convergence bymeans of modulus of continuity and Lipschitz function for these operators. Also, we establish a Korovkin type A-statistical approximation theorem.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 50 条
  • [1] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180
  • [2] q-Bernstein-Schurer-Kantorovich Operators
    Ozarslan, Mehmet Ali
    Vedi, Tuba
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [3] q-Bernstein-Schurer-Kantorovich Operators
    Mehmet Ali Özarslan
    Tuba Vedi
    Journal of Inequalities and Applications, 2013
  • [4] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    P. N. Agrawal
    Zoltán Finta
    A. Sathish Kumar
    Results in Mathematics, 2015, 67 : 365 - 380
  • [5] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    Agrawal, P. N.
    Finta, Zoltan
    Kumar, A. Sathish
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 365 - 380
  • [6] APPROXIMATION PROPERTIES OF THE GENERALIZED q-BERNSTEIN-SCHURER-KANTOROVICH OPERATORS
    Mursaleen, M.
    Khan, T.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [7] Approximation Properties of Bivariate Extension of q-Bernstein-Schurer-Kantorovich operators
    Acu, Ana Maria
    Muraru, Carmen Violeta
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 265 - 279
  • [8] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [9] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Journal of Inequalities and Applications, 2015
  • [10] Convergence of modification of the Kantorovich-type q-Bernstein-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1261 - 1272