q-Bernstein-Schurer-Kantorovich type operators

被引:0
|
作者
Agrawal, P. N. [1 ]
Goyal, Meenu [1 ]
Kajla, Arun [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
来源
关键词
q-Bernstein-Schurer-Kantorovich; Rate of convergence; Modulus of continuity; A-statistical convergence;
D O I
10.1007/s40574-015-0034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to present a Stancu type Kantorovich modification of q-Bernstein-Schurer operators introduced by Muraru (Mathematica LVI 2: 1-11, 2011) and modified by Ren and Zeng (Bull Korean Math Soc 50(4): 1145-1156, 2013). Here, we obtain a convergence theorem by using the well known Bohman-Korovkin criterion and find the estimate of the rate of convergence bymeans of modulus of continuity and Lipschitz function for these operators. Also, we establish a Korovkin type A-statistical approximation theorem.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 50 条
  • [21] King Type (p, q)-Bernstein Schurer Operators
    Bawa, Parveen
    Bhardwaj, Neha
    Bhatia, Sumit Kaur
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 431 - 443
  • [22] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Chauhan, Ruchi
    Ispir, Nurhayat
    Agrawal, P. N.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [23] 一类推广的q-Bernstein-Schurer-Kantorovich算子的逼近性质
    金钰
    常莉红
    数学的实践与认识, 2019, 49 (04) : 210 - 220
  • [24] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Ruchi Chauhan
    Nurhayat Ispir
    PN Agrawal
    Journal of Inequalities and Applications, 2017
  • [25] Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type
    Cai, Qing-Bo
    Cheng, Wen-Tao
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (12)
  • [26] Bivariate tensor product (p, q)-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    Xu, Xiao-Wei
    Zhou, Guorong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [27] King type modification of q-Bernstein-Schurer operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 805 - 817
  • [28] King type modification of q-Bernstein-Schurer operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Czechoslovak Mathematical Journal, 2013, 63 : 805 - 817
  • [29] Kantorovich type q-Bernstein-Stancu operators
    Erencin, Aysegul
    Bascanbaz-Tunca, Gulen
    Tasdelen, Fatma
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (01): : 89 - 105
  • [30] Approximation by Kantorovich type q-Bernstein operators
    Dalmanoglu, Ozge
    APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, 2007, : 113 - +