VALUE OF EMPIRICAL DATA IN LEARNING DISABILITY

被引:1
|
作者
KEPHART, NC [1 ]
机构
[1] GLEN HAVEN ACHIEVEMENT CTR,FT COLLINS,CO
关键词
D O I
10.1177/002221947100400707
中图分类号
G76 [特殊教育];
学科分类号
040109 ;
摘要
引用
收藏
页码:393 / 395
页数:3
相关论文
共 50 条
  • [41] An Empirical Assessment of Customer Lifetime Value Models within Data Mining
    Hiziroglu, Abdulkadir
    Sisci, Merve
    Cebeci, Halil Ibrahim
    Seymen, Omer Faruk
    BALTIC JOURNAL OF MODERN COMPUTING, 2018, 6 (04): : 434 - 448
  • [42] Big Data Assisted Empirical Study for Business Value Identification Using Smart Technologies: An Empirical Study for Business Value Identification of Big Data Adaption in E-Commerce
    Zhang, Chang
    Liu, Bin
    Mohammed, Badamasi Sani
    INTERNATIONAL JOURNAL OF E-COLLABORATION, 2023, 19 (07) : 1 - 19
  • [43] The student with a visual disability and a learning disability
    Erin, JN
    Koenig, AJ
    JOURNAL OF LEARNING DISABILITIES, 1997, 30 (03) : 309 - 320
  • [44] Disability and the ADA: Learning impairment as a disability
    Winner, BJ
    JOURNAL OF LAW MEDICINE & ETHICS, 2000, 28 (04): : 410 - 411
  • [45] Learning Disability Identification Consistency: The Impact of Methodology and Student Evaluation Data
    Maki, Kathrin E.
    Burns, Matthew K.
    Sullivan, Amanda
    SCHOOL PSYCHOLOGY QUARTERLY, 2017, 32 (02) : 254 - 267
  • [46] An Empirical Experiment on Deep Learning Models for Predicting Traffic Data
    Lee, Hyunwook
    Park, Cheonbok
    Jin, Seungmin
    Chu, Hyeshin
    Choo, Jaegul
    Ko, Sungahn
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 1817 - 1822
  • [47] Machine learning of material behaviour knowledge from empirical data
    Reich, Y
    Travitzky, N
    MATERIALS & DESIGN, 1995, 16 (05): : 251 - 259
  • [48] Federated Learning Algorithms with Heterogeneous Data Distributions: An Empirical Evaluation
    Mora, Alessio
    Fantini, Davide
    Bellavista, Paolo
    2022 IEEE/ACM 7TH SYMPOSIUM ON EDGE COMPUTING (SEC 2022), 2022, : 336 - 341
  • [49] Data Quality for Deep Learning of Judgment Documents: An Empirical Study
    Liu, Jiawei
    Wang, Dong
    Wang, Zhenzhen
    Chen, Zhenyu
    SEMANTIC TECHNOLOGY, JIST 2019, 2020, 1157 : 43 - 50
  • [50] Predicting Parking Occupancy with Deep Learning on Noisy Empirical Data
    Matiunina, Dania
    Sautter, Natalie
    Loder, Allister
    Bogenberger, Klaus
    2023 8TH INTERNATIONAL CONFERENCE ON MODELS AND TECHNOLOGIES FOR INTELLIGENT TRANSPORTATION SYSTEMS, MT-ITS, 2023,