A multigrid method for eigenvalue problems based on shifted-inverse power technique

被引:10
|
作者
Chen, Hongtao [1 ]
He, Yunhui [2 ]
Li, Yu [3 ]
Xie, Hehu [4 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[3] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, NCMIS,LSEC, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Eigenvalue problem; Multigrid; Shifted-inverse power iteration; Finite element method;
D O I
10.1007/s40879-014-0034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A multigrid method is proposed to solve eigenvalue problems by means of the finite element method based on the shifted-inverse power iteration technique. With this scheme, solving eigenvalue problem is transformed to solving a series of nonsingular boundary value problems on multilevel meshes. As replacing the difficult eigenvalue solving by an easier solving of boundary value problems, the multigrid way can improve the overall efficiency of the eigenvalue problem solving. Some numerical experiments are presented to validate the efficiency of this new method.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [41] An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem
    Bi, Hai
    Li, Hao
    Yang, Yidu
    APPLIED NUMERICAL MATHEMATICS, 2016, 105 : 64 - 81
  • [42] An inexact Cayley transform method for inverse eigenvalue problems
    Bai, Zheng-Jian
    Chan, Raymond H.
    Morini, Benedetta
    Inverse Probl, 1600, 5 (1675-1689):
  • [43] AN INVERSE ITERATION METHOD FOR EIGENVALUE PROBLEMS WITH EIGENVECTOR NONLINEARITIES
    Jarlebring, Elias
    Kvaal, Simen
    Michiels, Wim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A1978 - A2001
  • [44] Solving inverse eigenvalue problems by a projected Newton method
    Scholtyssek, V
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (9-10) : 925 - 944
  • [45] A Generalized Inexact Newton Method for Inverse Eigenvalue Problems
    Shen, Weiping
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [46] Direct method of inverse eigenvalue problems for structure redesign
    Wu, LS
    JOURNAL OF MECHANICAL DESIGN, 2003, 125 (04) : 845 - 847
  • [47] An inexact Cayley transform method for inverse eigenvalue problems
    Bai, ZJ
    Chan, RH
    Morini, B
    INVERSE PROBLEMS, 2004, 20 (05) : 1675 - 1689
  • [48] A Ulm-like method for inverse eigenvalue problems
    Shen, W. P.
    Li, C.
    Jin, X. Q.
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (03) : 356 - 367
  • [49] Shifted Inverse Power Method for Computing the Smallest M-Eigenvalue of a Fourth-Order Partially Symmetric Tensor
    Zhao, Jianxing
    Liu, Pin
    Sang, Caili
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (03) : 1131 - 1159
  • [50] Shifted Inverse Power Method for Computing the Smallest M-Eigenvalue of a Fourth-Order Partially Symmetric Tensor
    Jianxing Zhao
    Pin Liu
    Caili Sang
    Journal of Optimization Theory and Applications, 2024, 200 : 1131 - 1159