A multigrid method for eigenvalue problems based on shifted-inverse power technique

被引:10
|
作者
Chen, Hongtao [1 ]
He, Yunhui [2 ]
Li, Yu [3 ]
Xie, Hehu [4 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[3] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, NCMIS,LSEC, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Eigenvalue problem; Multigrid; Shifted-inverse power iteration; Finite element method;
D O I
10.1007/s40879-014-0034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A multigrid method is proposed to solve eigenvalue problems by means of the finite element method based on the shifted-inverse power iteration technique. With this scheme, solving eigenvalue problem is transformed to solving a series of nonsingular boundary value problems on multilevel meshes. As replacing the difficult eigenvalue solving by an easier solving of boundary value problems, the multigrid way can improve the overall efficiency of the eigenvalue problem solving. Some numerical experiments are presented to validate the efficiency of this new method.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [21] A full multigrid method for nonlinear eigenvalue problems
    ShangHui Jia
    HeHu Xie
    ManTing Xie
    Fei Xu
    Science China Mathematics, 2016, 59 : 2037 - 2048
  • [22] A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering
    Xie, Manting
    Xu, Fei
    Yue, Meiling
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05): : 1779 - 1802
  • [23] A SHIFTED METHOD FOR SOLVING SYMMETRICAL EIGENVALUE PROBLEMS
    ZHANG, ZY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (04) : 75 - 86
  • [24] Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems
    Fei Xu
    Qiumei Huang
    Journal of Scientific Computing, 2020, 82
  • [25] Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems
    Xu, Fei
    Huang, Qiumei
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [26] A NEWTONIAN METHOD FOR INVERSE EIGENVALUE PROBLEMS
    HADELER, KP
    NUMERISCHE MATHEMATIK, 1968, 12 (01) : 35 - &
  • [27] A multigrid–homotopy method for nonlinear inverse problems
    Liu, Tao
    Computers and Mathematics with Applications, 2021, 79 (06): : 1706 - 1717
  • [28] Parallel multigrid method for solving inverse problems
    Al-Mahdawi, H. K.
    Sidikova, A., I
    Alkattan, Hussein
    Abotaleb, Mostafa
    Kadi, Ammar
    El-kenawy, El-Sayed M.
    METHODSX, 2022, 9
  • [29] A TECHNIQUE TO SHIFT AN EIGENVALUE OF A COMPLEX MATRIX TO ACCELERATE CONVERGENCE OF THE POWER AND INVERSE POWER METHOD
    BUNCH, KJ
    GROW, RW
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (04) : 11 - 16
  • [30] A refined shifted block inverse-free Krylov subspace method for symmetric generalized eigenvalue problems
    Wang, Xiang
    Nie, Yong-ming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (06) : 1137 - 1146