A multigrid method for eigenvalue problems based on shifted-inverse power technique

被引:10
|
作者
Chen, Hongtao [1 ]
He, Yunhui [2 ]
Li, Yu [3 ]
Xie, Hehu [4 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[3] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, NCMIS,LSEC, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Eigenvalue problem; Multigrid; Shifted-inverse power iteration; Finite element method;
D O I
10.1007/s40879-014-0034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A multigrid method is proposed to solve eigenvalue problems by means of the finite element method based on the shifted-inverse power iteration technique. With this scheme, solving eigenvalue problem is transformed to solving a series of nonsingular boundary value problems on multilevel meshes. As replacing the difficult eigenvalue solving by an easier solving of boundary value problems, the multigrid way can improve the overall efficiency of the eigenvalue problem solving. Some numerical experiments are presented to validate the efficiency of this new method.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [31] A Type of Multigrid Method Based on the Fixed-Shift Inverse Iteration for the Steklov Eigenvalue Problem
    Li, Feiyan
    Bi, Hai
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [32] A new multigrid finite element method for the transmission eigenvalue problems
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 96 - 106
  • [33] An Algebraic Multigrid Method for Eigenvalue Problems and Its Numerical Tests
    Zhang, Ning
    Han, Xiaole
    He, Yunhui
    Xie, Hehu
    You, Chun'guang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (01) : 1 - 19
  • [34] Convergence and optimality of adaptive multigrid method for multiple eigenvalue problems
    Xu, Fei
    Xie, Manting
    Huang, Qiumei
    Yue, Meiling
    Ma, Hongkun
    Journal of Computational and Applied Mathematics, 2022, 415
  • [35] Convergence and optimality of adaptive multigrid method for multiple eigenvalue problems
    Xu, Fei
    Xie, Manting
    Huang, Qiumei
    Yue, Meiling
    Ma, Hongkun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 415
  • [36] The multilevel quasidiffusion method with multigrid in energy for eigenvalue transport problems
    Cornejo, Luke R.
    Anistratov, Dmitriy Y.
    PROGRESS IN NUCLEAR ENERGY, 2017, 101 : 401 - 408
  • [37] A numerical method for solving inverse eigenvalue problems
    Dai, H
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 1999, 33 (05) : 1003 - 1017
  • [38] On a Hybrid Method for Inverse Transmission Eigenvalue Problems
    Weishi Yin
    Zhaobin Xu
    Pinchao Meng
    Hongyu Liu
    Annals of Applied Mathematics, 2024, 40 (02) : 139 - 160
  • [39] A multigrid-homotopy method for nonlinear inverse problems
    Liu, Tao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (06) : 1706 - 1717
  • [40] Multigrid Method for Solving Inverse Problems for Heat Equation
    Al-Mahdawi, Hassan K. Ibrahim
    Abotaleb, Mostafa
    Alkattan, Hussein
    Tareq, Al-Mahdawi Zena
    Badr, Amr
    Kadi, Ammar
    MATHEMATICS, 2022, 10 (15)