Elliptic eigenstates for the quantum harmonic oscillator

被引:36
|
作者
Pollet, J [1 ]
Meplan, O [1 ]
Gignoux, C [1 ]
机构
[1] UNIV GRENOBLE 1,INST NUCL SCI,IN2P3,CNRS,F-38026 GRENOBLE,FRANCE
来源
关键词
D O I
10.1088/0305-4470/28/24/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new family of stationary coherent states for the two-dimensional harmonic oscillator is presented. These states are coherent in the sense that they minimize an uncertainty relation for observables related to the orientation and the eccentricity of an ellipse. The wavefunction of these states is particularly simple and well localized on the corresponding classical elliptical trajectory. As the number of quanta increases, the localization on the classical invariant structure is more pronounced. These coherent states give a useful tool to compare classical and quantum mechanics and form a convenient basis to study weak perturbations.
引用
收藏
页码:7287 / 7297
页数:11
相关论文
共 50 条
  • [41] LINEAR CHAOS IN THE QUANTUM HARMONIC OSCILLATOR
    WU Xinxing
    ZHU Peiyong
    Journal of Systems Science & Complexity, 2014, 27 (04) : 694 - 700
  • [42] Quantum phases for a generalized harmonic oscillator
    Bracken, Paul
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2008, 6 (01): : 135 - 140
  • [43] On the moment of inertia of a quantum harmonic oscillator
    Khamzin, A. A.
    Sitdikov, A. S.
    Nikitin, A. S.
    Roganov, D. A.
    PHYSICS OF ATOMIC NUCLEI, 2013, 76 (04) : 457 - 463
  • [44] Revisiting the damped quantum harmonic oscillator
    Barnett, Stephen M.
    Cresser, James D.
    Croke, Sarah
    PHYSICA SCRIPTA, 2024, 99 (02)
  • [45] A linear chaotic quantum harmonic oscillator
    Duan, J
    Fu, XC
    Liu, PD
    Manning, A
    APPLIED MATHEMATICS LETTERS, 1999, 12 (01) : 15 - 19
  • [46] Quantum Harmonic Oscillator Systems with Disorder
    Nachtergaele, Bruno
    Sims, Robert
    Stolz, Guenter
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (06) : 969 - 1012
  • [47] On the moment of inertia of a quantum harmonic oscillator
    A. A. Khamzin
    A. S. Sitdikov
    A. S. Nikitin
    D. A. Roganov
    Physics of Atomic Nuclei, 2013, 76 : 457 - 463
  • [48] THE QUANTUM HARMONIC-OSCILLATOR ON A LATTICE
    CHALBAUD, E
    GALLINAR, JP
    MATA, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (07): : L385 - L390
  • [49] Quantum simulation of discretized harmonic oscillator
    Valay K. Jain
    Bikash K. Behera
    Prasanta K. Panigrahi
    Quantum Studies: Mathematics and Foundations, 2021, 8 : 375 - 390
  • [50] Finite quantum kinematics of the harmonic oscillator
    Shiri-Garakani, M
    Finkelstein, DR
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (03)