Elliptic eigenstates for the quantum harmonic oscillator

被引:36
|
作者
Pollet, J [1 ]
Meplan, O [1 ]
Gignoux, C [1 ]
机构
[1] UNIV GRENOBLE 1,INST NUCL SCI,IN2P3,CNRS,F-38026 GRENOBLE,FRANCE
来源
关键词
D O I
10.1088/0305-4470/28/24/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new family of stationary coherent states for the two-dimensional harmonic oscillator is presented. These states are coherent in the sense that they minimize an uncertainty relation for observables related to the orientation and the eccentricity of an ellipse. The wavefunction of these states is particularly simple and well localized on the corresponding classical elliptical trajectory. As the number of quanta increases, the localization on the classical invariant structure is more pronounced. These coherent states give a useful tool to compare classical and quantum mechanics and form a convenient basis to study weak perturbations.
引用
收藏
页码:7287 / 7297
页数:11
相关论文
共 50 条
  • [21] Discrete Quantum Harmonic Oscillator
    Dobrogowska, Alina
    Fernandez C, David J.
    SYMMETRY-BASEL, 2019, 11 (11):
  • [22] Quantum Harmonic Oscillator Sonification
    Saranti, Anna
    Eckel, Gerhard
    Pirro, David
    AUDITORY DISPLAY, 2010, 5954 : 184 - 201
  • [23] On the quantum information entropies and squeezing associated with the eigenstates of the isotonic oscillator
    Ghasemi, A.
    Hooshmandasl, M. R.
    Tavassoly, M. K.
    PHYSICA SCRIPTA, 2011, 84 (03)
  • [24] Asymmetrical quantum sextic anharmonic oscillator: Eigenstates and thermal properties
    Lee, JY
    Liu, KL
    Lo, CF
    PHYSICAL REVIEW A, 1998, 58 (05): : 3433 - 3438
  • [25] CLASSICAL AND QUANTUM DESCRIPTION OF THE TWO-DIMENSIONAL SIMPLE HARMONIC-OSCILLATOR IN ELLIPTIC COORDINATES
    FENDRIK, AJ
    BERNATH, M
    PHYSICAL REVIEW A, 1989, 40 (08): : 4215 - 4223
  • [26] HARMONIC-OSCILLATOR COHERENT STATES SUPERPOSED TO REPRESENT POSITION AND MOMENTUM EIGENSTATES
    FUJIWARA, I
    MIYOSHI, K
    PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (01): : 331 - 333
  • [27] Anomalous Dissipative Quantum Harmonic Oscillator
    BAI Zhan-Wu Department of Mathematics and Physics
    CommunicationsinTheoreticalPhysics, 2008, 49 (01) : 137 - 142
  • [28] Linear chaos in the quantum harmonic oscillator
    Xinxing Wu
    Peiyong Zhu
    Journal of Systems Science and Complexity, 2014, 27 : 694 - 700
  • [29] Quantum dynamics of the classical harmonic oscillator
    Giannakis, Dimitrios
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (04)
  • [30] A NOTE ON THE QUANTUM RULE OF THE HARMONIC OSCILLATOR
    YANG, LM
    PHYSICAL REVIEW, 1951, 84 (04): : 788 - 790