Elliptic eigenstates for the quantum harmonic oscillator

被引:36
|
作者
Pollet, J [1 ]
Meplan, O [1 ]
Gignoux, C [1 ]
机构
[1] UNIV GRENOBLE 1,INST NUCL SCI,IN2P3,CNRS,F-38026 GRENOBLE,FRANCE
来源
关键词
D O I
10.1088/0305-4470/28/24/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new family of stationary coherent states for the two-dimensional harmonic oscillator is presented. These states are coherent in the sense that they minimize an uncertainty relation for observables related to the orientation and the eccentricity of an ellipse. The wavefunction of these states is particularly simple and well localized on the corresponding classical elliptical trajectory. As the number of quanta increases, the localization on the classical invariant structure is more pronounced. These coherent states give a useful tool to compare classical and quantum mechanics and form a convenient basis to study weak perturbations.
引用
收藏
页码:7287 / 7297
页数:11
相关论文
共 50 条
  • [31] Quantum decoherence of the damped harmonic oscillator
    A. Isar
    Optics and Spectroscopy, 2007, 103 : 252 - 257
  • [32] Quadratic open quantum harmonic oscillator
    Dhahri, Ameur
    Fagnola, Franco
    Yoo, Hyun Jae
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (07) : 1759 - 1782
  • [33] The complex quantum harmonic oscillator model
    Arbab, A. I.
    EPL, 2012, 98 (03)
  • [34] The principal measure of a quantum harmonic oscillator
    Wu, Xinxing
    Zhu, Peiyong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (50)
  • [35] Quantum Harmonic Oscillator Systems with Disorder
    Bruno Nachtergaele
    Robert Sims
    Günter Stolz
    Journal of Statistical Physics, 2012, 149 : 969 - 1012
  • [36] Quadratic open quantum harmonic oscillator
    Ameur Dhahri
    Franco Fagnola
    Hyun Jae Yoo
    Letters in Mathematical Physics, 2020, 110 : 1759 - 1782
  • [37] CONSTRAINED QUANTUM MECHANICAL HARMONIC OSCILLATOR
    DEAN, P
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 62 : 277 - &
  • [38] Quantum dynamics of the damped harmonic oscillator
    Philbin, T. G.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [39] Quantum decoherence of the damped harmonic oscillator
    Isar, A.
    OPTICS AND SPECTROSCOPY, 2007, 103 (02) : 252 - 257
  • [40] Relativistic Generalizations of the Quantum Harmonic Oscillator
    Poszwa, A.
    ACTA PHYSICA POLONICA A, 2014, 126 (06) : 1226 - 1234