Functional limit theorems for additive and multiplicative schemes in the Cox-Ingersoll-Ross model

被引:1
|
作者
Mishura, Yuliia [1 ]
Munchak, Yevheniia [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Volodymyrska Str 64, UA-01601 Kiev, Ukraine
来源
关键词
Cox-Ingersoll-Ross process; discrete approximation scheme; functional limit theorems;
D O I
10.15559/16-VMSTA48
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the Cox-Ingersoll-Ross (CIR) process in the regime where the process does not hit zero. We construct additive and multiplicative discrete approximation schemes for the price of asset that is modeled by the CIR process and geometric CIR process. In order to construct these schemes, we take the Euler approximations of the CIR process itself but replace the increments of the Wiener process with iid bounded vanishing symmetric random variables. We introduce a "truncated" CIR process and apply it to prove the weak convergence of asset prices. We establish the fact that this "truncated" process does not hit zero under the same condition considered for the original nontruncated process.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] LIMIT THEOREMS FOR A COX-INGERSOLL-ROSS PROCESS WITH HAWKES JUMPS
    Zhu, Lingjiong
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (03) : 699 - 712
  • [2] Estimation in the Cox-Ingersoll-Ross model
    Overbeck, L
    Ryden, T
    ECONOMETRIC THEORY, 1997, 13 (03) : 430 - 461
  • [3] Change detection in the Cox-Ingersoll-Ross model
    Pap, Gyula
    Szabo, Tamas T.
    STATISTICS & RISK MODELING, 2016, 33 (1-2) : 21 - 40
  • [4] A stable Cox-Ingersoll-Ross model with restart
    Peng, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 1185 - 1194
  • [5] Wiener chaos and the Cox-Ingersoll-Ross model
    Grasselli, MR
    Hurd, TR
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2054): : 459 - 479
  • [6] Embedding the Vasicek model into the Cox-Ingersoll-Ross model
    Sinkala, W.
    Leach, P. G. L.
    O'Hara, J. G.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) : 152 - 159
  • [7] Analyticity of the Cox-Ingersoll-Ross semigroup
    Fornaro, S.
    Metafune, G.
    POSITIVITY, 2020, 24 (04) : 915 - 931
  • [8] ON THE SINGULAR LIMIT OF SOLUTIONS TO THE COX-INGERSOLL-ROSS INTEREST RATE MODEL WITH STOCHASTIC VOLATILITY
    Stehlikova, Beata
    Sevcovic, Daniel
    KYBERNETIKA, 2009, 45 (04) : 670 - 680
  • [9] Cox-Ingersoll-Ross model for wind speed modeling and forecasting
    Bensoussan, Alain
    Brouste, Alexandre
    WIND ENERGY, 2016, 19 (07) : 1355 - 1365
  • [10] Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model
    Li, Zenghu
    Ma, Chunhua
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (08) : 3196 - 3233