DIFFUSION MODELS AND BROWNIAN MOTION IN POPULATION GENETICS

被引:1
|
作者
MARUYAMA, T [1 ]
机构
[1] NATL INST GENET, MISIMA 411, JAPAN
来源
JAPANESE JOURNAL OF GENETICS | 1973年 / 48卷 / 03期
关键词
D O I
10.1266/jjg.48.231
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
引用
收藏
页码:231 / 234
页数:4
相关论文
共 50 条
  • [21] Fractional Brownian motion models for polymers
    Chakravarti, N
    Sebastian, KL
    CHEMICAL PHYSICS LETTERS, 1997, 267 (1-2) : 9 - 13
  • [22] Arbitrage in fractional Brownian motion models
    Cheridito, P
    FINANCE AND STOCHASTICS, 2003, 7 (04) : 533 - 553
  • [23] Arbitrage in fractional Brownian motion models
    Patrick Cheridito
    Finance and Stochastics, 2003, 7 : 533 - 553
  • [24] Arbitrage in skew Brownian motion models
    Rossello, Damiano
    INSURANCE MATHEMATICS & ECONOMICS, 2012, 50 (01): : 50 - 56
  • [25] BROWNIAN MOTION TREE MODELS ARE TORIC
    Sturmfels, Bernd
    Uhler, Caroline
    Zwiernik, Piotr
    KYBERNETIKA, 2020, 56 (06) : 1154 - 1175
  • [26] Quantum Brownian motion with inhomogeneous damping and diffusion
    Massignan, Pietro
    Lampo, Aniello
    Wehr, Jan
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2015, 91 (03)
  • [27] On the distribution of estimators of diffusion constants for Brownian motion
    Boyer, Denis
    Dean, David S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (33)
  • [28] QUANTUM BROWNIAN-MOTION AND CLASSICAL DIFFUSION
    TSEKOV, R
    VAYSSILOV, GN
    CHEMICAL PHYSICS LETTERS, 1992, 195 (04) : 423 - 426
  • [29] NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION
    Georgiev, Bogdan
    Mukherjee, Mayukh
    ANALYSIS & PDE, 2018, 11 (01): : 133 - 148
  • [30] BROWNIAN-MOTION AND DIFFUSION - FREEDMAN,D
    KNIGHT, F
    SIAM REVIEW, 1984, 26 (02) : 302 - 303