On the distribution of estimators of diffusion constants for Brownian motion

被引:15
|
作者
Boyer, Denis [1 ,2 ]
Dean, David S. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico
[2] Univ Toulouse, Theoret Phys Lab, IRSAMC, CNRS, F-31062 Toulouse, France
关键词
SINGLE-PARTICLE TRACKING; FUNCTIONALS;
D O I
10.1088/1751-8113/44/33/335003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the distribution of various estimators for extracting the diffusion constant of single Brownian trajectories obtained by fitting the squared displacement of the trajectory. The analysis of the problem can be framed in terms of quadratic functionals of Brownian motion that correspond to the Euclidean path integral for simple Harmonic oscillators with time dependent frequencies. Explicit analytical results are given for the distribution of the diffusion constant estimator in a number of cases and our results are confirmed by numerical simulations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] BROWNIAN-MOTION OF A DOMAIN-WALL AND THE DIFFUSION CONSTANTS
    WADA, Y
    SCHRIEFFER, JR
    PHYSICAL REVIEW B, 1978, 18 (08): : 3897 - 3912
  • [2] Brownian motion of magnetic domain walls and skyrmions, and their diffusion constants
    Miltat, Jacques
    Rohart, Stanislas
    Thiaville, Andre
    PHYSICAL REVIEW B, 2018, 97 (21)
  • [3] Estimators for the Drift of Subfractional Brownian Motion
    Shen, Guangjun
    Yan, Litan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (08) : 1601 - 1612
  • [4] Distribution of the least-squares estimators of a single Brownian trajectory diffusion coefficient
    Boyer, Denis
    Dean, David S.
    Mejia-Monasterio, Carlos
    Oshanin, Gleb
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [5] Ergodic least-squares estimators of the generalized diffusion coefficient for fractional Brownian motion
    Boyer, Denis
    Dean, David S.
    Mejia-Monasterio, Carlos
    Oshanin, Gleb
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [6] TWO CONSISTENT ESTIMATORS FOR THE SKEW BROWNIAN MOTION
    Lejay, Antoine
    Mordecki, Ernesto
    Torres, Soledad
    ESAIM-PROBABILITY AND STATISTICS, 2019, 23 : 567 - 583
  • [7] Brownian motion and molecular constants.
    Perrin, J
    Dabrowski
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1909, 149 : 477 - 479
  • [8] BROWNIAN MOTION AND DIFFUSION OF SPINS
    KOCINSKI, J
    PHYSICS LETTERS A, 1968, A 28 (04) : 282 - &
  • [9] ON MOMENTS OF PITMAN ESTIMATORS: THE CASE OF FRACTIONAL BROWNIAN MOTION
    Novikov, A.
    Kordzakhia, N.
    Ling, T.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2014, 58 (04) : 601 - 614
  • [10] Large deviations and Berry-Esseen inequalities for estimators in nonhomogeneous diffusion driven by fractional Brownian motion
    Tanoh, Kouacou
    N'zi, Modeste
    Yode, Armel Fabrice
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2020, 28 (03) : 183 - 196