On the distribution of estimators of diffusion constants for Brownian motion

被引:15
|
作者
Boyer, Denis [1 ,2 ]
Dean, David S. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico
[2] Univ Toulouse, Theoret Phys Lab, IRSAMC, CNRS, F-31062 Toulouse, France
关键词
SINGLE-PARTICLE TRACKING; FUNCTIONALS;
D O I
10.1088/1751-8113/44/33/335003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the distribution of various estimators for extracting the diffusion constant of single Brownian trajectories obtained by fitting the squared displacement of the trajectory. The analysis of the problem can be framed in terms of quadratic functionals of Brownian motion that correspond to the Euclidean path integral for simple Harmonic oscillators with time dependent frequencies. Explicit analytical results are given for the distribution of the diffusion constant estimator in a number of cases and our results are confirmed by numerical simulations.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Distribution of the maximum of a fractional Brownian motion
    Sinai, YG
    RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (02) : 359 - 378
  • [22] Heat distribution of relativistic Brownian motion
    Paraguassu, Pedro, V
    Morgado, Welles A. M.
    EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (10):
  • [23] Area distribution of an elastic Brownian motion
    Rajabpour, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (48)
  • [24] Heat distribution in quantum Brownian motion
    Zhang, Ze-Zhou
    Tan, Qing-Shou
    Wu, Wei
    PHYSICAL REVIEW E, 2023, 108 (01)
  • [25] Heat distribution of relativistic Brownian motion
    Pedro V. Paraguassú
    Welles A. M. Morgado
    The European Physical Journal B, 2021, 94
  • [26] Diffusion in different models of active Brownian motion
    Lindner, B.
    Nicola, E. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 157 (1): : 43 - 52
  • [27] Quantum Brownian motion with inhomogeneous damping and diffusion
    Massignan, Pietro
    Lampo, Aniello
    Wehr, Jan
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2015, 91 (03)
  • [28] DIFFUSION MODELS AND BROWNIAN MOTION IN POPULATION GENETICS
    MARUYAMA, T
    JAPANESE JOURNAL OF GENETICS, 1973, 48 (03): : 231 - 234
  • [29] QUANTUM BROWNIAN-MOTION AND CLASSICAL DIFFUSION
    TSEKOV, R
    VAYSSILOV, GN
    CHEMICAL PHYSICS LETTERS, 1992, 195 (04) : 423 - 426
  • [30] NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION
    Georgiev, Bogdan
    Mukherjee, Mayukh
    ANALYSIS & PDE, 2018, 11 (01): : 133 - 148