ON QUANTUM FLAG ALGEBRAS

被引:0
|
作者
BRAVERMAN, A
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a semisimple simply connected algebraic group over an algebraically closed field of characteristic 0. Let V be a simple finite-dimensional G-module and let y be its highest weight vector. It is a classical result of B. Kostant that the algebra of functions on the closure of G . y is quadratic. In this paper we generalize this result to the case of the quantum group U-q(g). The proof uses information about the quantum R-matrix due to Drinfeld and Reshetikhin.
引用
收藏
页码:1055 / 1059
页数:5
相关论文
共 50 条
  • [41] On the Local Structure of Oriented Graphs - a Case Study in Flag Algebras
    Gilboa, Shoni
    Glebov, Roman
    Hefetz, Dan
    Linial, Nati
    Morgenstern, Avraham
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03): : 1 - 53
  • [42] Quantum Q systems: from cluster algebras to quantum current algebras
    Philippe Di Francesco
    Rinat Kedem
    Letters in Mathematical Physics, 2017, 107 : 301 - 341
  • [43] Quantum Q systems: from cluster algebras to quantum current algebras
    Di Francesco, Philippe
    Kedem, Rinat
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (02) : 301 - 341
  • [44] Quantum Affine Vertex Algebras Associated to Untwisted Quantum Affinization Algebras
    Kong, Fei
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (03) : 2577 - 2625
  • [45] Quantum Affine Vertex Algebras Associated to Untwisted Quantum Affinization Algebras
    Fei Kong
    Communications in Mathematical Physics, 2023, 402 : 2577 - 2625
  • [46] On quantum shuffle and quantum affine algebras
    Grosse, P.
    JOURNAL OF ALGEBRA, 2007, 318 (02) : 495 - 519
  • [47] HALL ALGEBRAS, HEREDITARY ALGEBRAS AND QUANTUM GROUPS
    GREEN, JA
    INVENTIONES MATHEMATICAE, 1995, 120 (02) : 361 - 377
  • [48] Quantum symmetric algebras as braided hopf algebras
    de Chela, DF
    Algebraic Structures and Their Representations, 2005, 376 : 261 - 271
  • [49] Kac, algebras, quantum doubles and planar algebras
    Jijo, S.
    Sunder, V. S.
    SYMMETRY IN MATHEMATICS AND PHYSICS, 2009, 490 : 97 - +
  • [50] Quantum affine algebras and affine Hecke algebras
    Chari, V
    Pressley, A
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) : 295 - 326