Let G be a semisimple simply connected algebraic group over an algebraically closed field of characteristic 0. Let V be a simple finite-dimensional G-module and let y be its highest weight vector. It is a classical result of B. Kostant that the algebra of functions on the closure of G . y is quadratic. In this paper we generalize this result to the case of the quantum group U-q(g). The proof uses information about the quantum R-matrix due to Drinfeld and Reshetikhin.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
机构:
Univ Sorbonne Paris Nord, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, FranceUniv Sorbonne Paris Nord, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, France
RIGAL, L.
ZADUNAISKY, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ CAECE, Dept Matemat, Buenos Aires, DF, ArgentinaUniv Sorbonne Paris Nord, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, France