A POINTER-FREE DATA STRUCTURE FOR MERGING HEAPS AND MIN-MAX HEAPS

被引:4
|
作者
GAMBOSI, G [1 ]
NARDELLI, E [1 ]
TALAMO, M [1 ]
机构
[1] UNIV LAQUILA,DIPARTIMENTO MATEMAT PURA & APPL,I-67100 LAQUILA,ITALY
关键词
D O I
10.1016/0304-3975(91)90262-Z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper a data structure for the representation of mergeable heaps and min-max heaps without using pointers is introduced. The supported operations are: Insert, DeleteMax, DeleteMin, FindMax, FindMin, Merge, NewHeap, DeleteHeap. The structure is analyzed in terms of amortized time complexity, resulting in a O(1) amortized time for each operation except for Insert, for which a O(lg n) bound holds.
引用
收藏
页码:107 / 126
页数:20
相关论文
共 50 条
  • [31] Algorithms for the Min-max Regret Generalized Assignment Problem with Interval Data
    Wu, W.
    Iori, M.
    Martello, S.
    Yagiura, M.
    2014 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2014, : 734 - 738
  • [32] Data Clustering Using a Modified Fuzzy Min-Max Neural Network
    Seera, Manjeevan
    Lim, Chee Peng
    Loo, Chu Kiong
    Jain, Lakhmi C.
    SOFT COMPUTING APPLICATIONS, (SOFA 2014), VOL 1, 2016, 356 : 413 - 422
  • [33] Structure properties of min-max systems and existence of global cycle time
    Zhao, QC
    Zheng, DZ
    Zhu, XP
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (01) : 148 - 151
  • [34] Distribution-free checkpoint placement algorithms based on min-max principle
    Ozaki, T
    Dohi, T
    Okamura, H
    Kaio, N
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2006, 3 (02) : 130 - 140
  • [35] A min-max approach to set point stabilization for a class of drift free systems
    Michalska, H
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 2897 - 2902
  • [36] MIN-MAX THEORY FOR FREE BOUNDARY MINIMAL HYPERSURFACES I - REGULARITY THEORY
    Li, Martin Man-Chun
    Zhou, Xin
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 118 (03) : 487 - 553
  • [37] Fuzzy min-max neural networks for categorical data: application to missing data imputation
    Rey-del-Castillo, Pilar
    Cardenosa, Jesus
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (06): : 1349 - 1362
  • [38] Min-max theory for free boundary G-invariant minimal hypersurfaces
    Wang, Tongrui
    ADVANCES IN MATHEMATICS, 2023, 425
  • [39] A min-max regret approach to maximum likelihood inference under incomplete data
    Guillaume, Romain
    Dubois, Didier
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 121 : 135 - 149
  • [40] Learning imbalanced data sets with a min-max modular support vector machine
    Ye, Zhi-Fei
    Lu, Bao-Liang
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1673 - 1678