A POINTER-FREE DATA STRUCTURE FOR MERGING HEAPS AND MIN-MAX HEAPS

被引:4
|
作者
GAMBOSI, G [1 ]
NARDELLI, E [1 ]
TALAMO, M [1 ]
机构
[1] UNIV LAQUILA,DIPARTIMENTO MATEMAT PURA & APPL,I-67100 LAQUILA,ITALY
关键词
D O I
10.1016/0304-3975(91)90262-Z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper a data structure for the representation of mergeable heaps and min-max heaps without using pointers is introduced. The supported operations are: Insert, DeleteMax, DeleteMin, FindMax, FindMin, Merge, NewHeap, DeleteHeap. The structure is analyzed in terms of amortized time complexity, resulting in a O(1) amortized time for each operation except for Insert, for which a O(lg n) bound holds.
引用
收藏
页码:107 / 126
页数:20
相关论文
共 50 条
  • [21] Min-max optimal data encoding and fusion in sensor networks
    Zherlitsyn, Gleb
    Matveev, Alexey S.
    AUTOMATICA, 2010, 46 (09) : 1546 - 1552
  • [22] A min-max cult algorithm for graph partitioning and data clustering
    NERSC Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, United States
    不详
    不详
    Proc. IEEE Int. Conf. Data Min. ICDM, (107-114): : 107 - 114
  • [23] A min-max cut algorithm for graph partitioning and data clustering
    Ding, CHQ
    He, XF
    Zha, HY
    Gu, M
    Simon, HD
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 107 - 114
  • [24] Equivariant index bound for min-max free boundary minimal surfaces
    Franz, Giada
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (07)
  • [25] Symmetric Min-Max heap: A simpler data structure for double-ended priority queue
    Arvind, A
    Rangan, CP
    INFORMATION PROCESSING LETTERS, 1999, 69 (04) : 197 - 199
  • [26] Existence of min-max free boundary disks realizing the width of a manifold
    Laurain, Paul
    Petrides, Romain
    ADVANCES IN MATHEMATICS, 2019, 352 : 326 - 371
  • [27] Gradient and Projection Free Distributed Online Min-Max Resource Optimization
    Wang, Jingrong
    Liang, Ben
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [28] Iterative solutions of min-max parameter estimation with bounded data uncertainties
    Sayed, AH
    Garulli, A
    Chandrasekaran, S
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3561 - 3564
  • [29] Min-max regret robust optimization approach on interval data uncertainty
    Assavapokee, T.
    Realff, M. J.
    Ammons, J. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (02) : 297 - 316
  • [30] Min-Max Regret Robust Optimization Approach on Interval Data Uncertainty
    T. Assavapokee
    M. J. Realff
    J. C. Ammons
    Journal of Optimization Theory and Applications, 2008, 137 : 297 - 316