PARALLEL COMPUTATION OF MATCHINGS IN TREES

被引:0
|
作者
OSIAKWAN, CNK
AKL, SG
机构
[1] Department of Computing and Information Science, Queen's University, Kingston
基金
加拿大自然科学与工程研究理事会;
关键词
B-MATCHING; MATCHING; PARALLEL ALGORITHM; PARALLEL RANDOM ACCESS MACHINE (PRAM);
D O I
10.1016/S0167-8191(05)80054-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present adaptive parallel algorithms for b-matchings in trees. The algorithms are designed using the exclusive-read exclusive-write parallel random-access machine (EREW PRAM) model of parallel computation. For a tree of n vertices, we present an algorithm that determines a maximum cardinality b-matching in O(n/p + log n) time using p processors, where p less-than-or-equal-to n. An algorithm that executes in O(n/p' + log n) time, where 1 < np/(n + p log n) less-than-or-equal-to p' < p less-than-or-equal-to n and p > square-root n/(log n is also designed for the maximum weight b-matching problem in trees. When p less-than-or-equal-to n/(log n), the algorithm are cost-optimal.
引用
收藏
页码:643 / 656
页数:14
相关论文
共 50 条
  • [41] Ordering the complements of trees by the number of maximum matchings
    Yan, WG
    Yeh, YN
    Zhang, FJ
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 105 (02) : 131 - 141
  • [42] MATCHINGS IN SUPERPOSITIONS OF (N, N)-BIPARTITE TREES
    SCHMUTZ, E
    RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (01) : 235 - 241
  • [43] Shortest Augmenting Paths for Online Matchings on Trees
    Bosek, Bartlomiej
    Leniowski, Dariusz
    Sankowski, Piotr
    Zych, Anna
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2015, 2015, 9499 : 59 - 71
  • [44] On the minimal energy ordering of trees with perfect matchings
    Guo, Ji-Ming
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (14) : 2598 - 2605
  • [45] Restricted online Ramsey numbers of matchings and trees
    Briggs, Joseph
    Cox, Christopher
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 16
  • [46] Shortest Augmenting Paths for Online Matchings on Trees
    Bartłomiej Bosek
    Dariusz Leniowski
    Piotr Sankowski
    Anna Zych-Pawlewicz
    Theory of Computing Systems, 2018, 62 : 337 - 348
  • [47] On the Laplacian spectral radii of trees with perfect matchings
    Yuan, Xi-Ying
    Shao, Jia-Yu
    He, Chang-Xiang
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (01) : 65 - 85
  • [48] A note on matchings and spanning trees with bounded degrees
    RiveraCampo, E
    GRAPHS AND COMBINATORICS, 1997, 13 (02) : 159 - 165
  • [49] Optimal random matchings, tours, and spanning trees in hierarchically separated trees
    Csaba, Bela
    Plick, Thomas A.
    Shokoufandeh, Ali
    THEORETICAL COMPUTER SCIENCE, 2013, 500 : 68 - 89
  • [50] A note on the number of matchings and independent sets in trees
    Fischermann, M
    Volkmann, L
    Rautenbach, D
    DISCRETE APPLIED MATHEMATICS, 2005, 145 (03) : 483 - 489