PARALLEL COMPUTATION OF MATCHINGS IN TREES

被引:0
|
作者
OSIAKWAN, CNK
AKL, SG
机构
[1] Department of Computing and Information Science, Queen's University, Kingston
基金
加拿大自然科学与工程研究理事会;
关键词
B-MATCHING; MATCHING; PARALLEL ALGORITHM; PARALLEL RANDOM ACCESS MACHINE (PRAM);
D O I
10.1016/S0167-8191(05)80054-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present adaptive parallel algorithms for b-matchings in trees. The algorithms are designed using the exclusive-read exclusive-write parallel random-access machine (EREW PRAM) model of parallel computation. For a tree of n vertices, we present an algorithm that determines a maximum cardinality b-matching in O(n/p + log n) time using p processors, where p less-than-or-equal-to n. An algorithm that executes in O(n/p' + log n) time, where 1 < np/(n + p log n) less-than-or-equal-to p' < p less-than-or-equal-to n and p > square-root n/(log n is also designed for the maximum weight b-matching problem in trees. When p less-than-or-equal-to n/(log n), the algorithm are cost-optimal.
引用
收藏
页码:643 / 656
页数:14
相关论文
共 50 条
  • [31] Parallel computation of the Euclidean distance transform on the mesh of trees and the hypercube computer
    Lee, YH
    Horng, SJ
    Kao, TW
    Chen, YJ
    COMPUTER VISION AND IMAGE UNDERSTANDING, 1997, 68 (01) : 109 - 119
  • [32] On the largest eigenvalues of trees with perfect matchings
    Wenshui Lin
    Xiaofeng Guo
    Journal of Mathematical Chemistry, 2007, 42 : 1057 - 1067
  • [33] Shortest Augmenting Paths for Online Matchings on Trees
    Bosek, Bartlomiej
    Leniowski, Dariusz
    Sankowski, Piotr
    Zych-Pawlewicz, Anna
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (02) : 337 - 348
  • [34] Minimizing the Stabbing Number of Matchings, Trees, and Triangulations
    Sándor P. Fekete
    Marco E. Lübbecke
    Henk Meijer
    Discrete & Computational Geometry, 2008, 40
  • [35] Minimizing the Stabbing Number of Matchings, Trees, and Triangulations
    Fekete, Sandor P.
    Luebbecke, Marco E.
    Meijer, Henk
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 40 (04) : 595 - 621
  • [36] On diameter 5 trees with the maximum number of matchings
    Kuz'min, N. A.
    Malyshev, D. S.
    SBORNIK MATHEMATICS, 2023, 214 (02) : 273 - 284
  • [37] Matchings on trees and the adjacency matrix: A determinantal viewpoint
    Meszaros, Andras
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (03) : 753 - 778
  • [38] Paths, trees and matchings under disjunctive constraints
    Darmann, Andreas
    Pferschy, Ulrich
    Schauer, Joachim
    Woeginger, Gerhard J.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1726 - 1735
  • [39] MATCHINGS AND TRANSVERSALS IN HYPERGRAPHS, DOMINATION AND INDEPENDENCE IN TREES
    COCKAYNE, EJ
    HEDETNIEMI, ST
    SLATER, PJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 26 (01) : 78 - 80
  • [40] On the minimal energy ordering of trees with perfect matchings
    Department of Applied Mathematics, China University of Petroleum, Shandong Dongying, 257061, China
    Discrete Appl Math, 14 (2598-2605):