GALERKIN METHODS FOR PARABOLIC EQUATIONS

被引:255
|
作者
DOUGLAS, J
DUPONT, T
机构
关键词
D O I
10.1137/0707048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:575 / &
相关论文
共 50 条
  • [31] ON THE SMOOTHING PROPERTY OF THE GALERKIN METHOD FOR PARABOLIC EQUATIONS
    LUSKIN, M
    RANNACHER, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (01) : 93 - 113
  • [32] ERROR ESTIMATES FOR GALERKIN METHODS FOR QUASILINEAR PARABOLIC AND ELLIPTIC DIFFERENTIAL-EQUATIONS IN DIVERGENCE FORM
    AXELSSON, O
    NUMERISCHE MATHEMATIK, 1977, 28 (01) : 1 - 14
  • [33] Optimal convergence analysis of weak Galerkin finite element methods for parabolic equations with lower regularity
    Liu, Xuan
    Zou, Yongkui
    Chai, Shimin
    Wang, Huimin
    NUMERICAL ALGORITHMS, 2024, 97 (03) : 1323 - 1339
  • [34] CONVERGENCE OF SEMIDISCRETE APPROXIMATIONS OF GALERKIN FOR QUASILINEAR PARABOLIC EQUATIONS
    SMAGIN, VV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (02): : 62 - 67
  • [35] A discontinuous Galerkin method applied to nonlinear parabolic equations
    Rivière, B
    Wheeler, MF
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 231 - 244
  • [36] The Galerkin–Fourier method for the study of nonlocal parabolic equations
    Fuensanta Andrés
    Julio Muñoz
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [37] BLOCK METHODS FOR PARABOLIC EQUATIONS
    JACQUES, IB
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1984, 16 (3-4) : 317 - 331
  • [38] LIAPUNOV METHODS AND PARABOLIC EQUATIONS
    CHAFEE, N
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A350 - A351
  • [39] Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic Equations
    Boya Zhou
    Xiaoli Chen
    Dongfang Li
    Journal of Scientific Computing, 2020, 85
  • [40] LOW-RANK APPROXIMATION OF LINEAR PARABOLIC EQUATIONS BY SPACE-TIME TENSOR GALERKIN METHODS
    Boiveau, Thomas
    Ehrlacher, Virginie
    Ern, Alexandre
    Nouy, Anthony
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 635 - 658