ON THE SMOOTHING PROPERTY OF THE GALERKIN METHOD FOR PARABOLIC EQUATIONS

被引:94
|
作者
LUSKIN, M [1 ]
RANNACHER, R [1 ]
机构
[1] UNIV BONN,INST ANGEW MATH,D-5300 BONN 1,FED REP GER
关键词
D O I
10.1137/0719003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:93 / 113
页数:21
相关论文
共 50 条
  • [1] Invariant region property of weak Galerkin method for semilinear parabolic equations
    Qin, Mingze
    Wang, Xiuli
    Zhou, Huifang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 460
  • [2] The smoothing property for a class of doubly nonlinear parabolic equations
    Ebmeyer, C
    Urbano, JM
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (08) : 3239 - 3253
  • [3] A discontinuous Galerkin method applied to nonlinear parabolic equations
    Rivière, B
    Wheeler, MF
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 231 - 244
  • [4] The Galerkin–Fourier method for the study of nonlocal parabolic equations
    Fuensanta Andrés
    Julio Muñoz
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [5] A GALERKIN METHOD WITH SMOOTHING
    GATICA, GN
    JOURNAL OF APPROXIMATION THEORY, 1990, 61 (03) : 371 - 383
  • [6] GALERKIN METHODS FOR PARABOLIC EQUATIONS
    DOUGLAS, J
    DUPONT, T
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) : 575 - &
  • [7] GALERKIN METHOD FOR NONLINEAR PARABOLIC EQUATIONS OF UNSTEADY GROUNDWATER FLOW
    YOON, YS
    YEH, WWG
    WATER RESOURCES RESEARCH, 1975, 11 (05) : 751 - 754
  • [8] A New Discontinuous Galerkin Method for Parabolic Equations with Discontinuous Coefficient
    Zhang, Rongpei
    Yu, Xijun
    Cui, Xia
    Long, Xiaohan
    Feng, Tao
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (02): : 325 - 342
  • [9] The Galerkin-Fourier method for the study of nonlocal parabolic equations
    Andres, Fuensanta
    Munoz, Julio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):
  • [10] A Galerkin method for mixed parabolic–elliptic partial differential equations
    Marcus Stiemer
    Numerische Mathematik, 2010, 116 : 435 - 462