DETERMINATION OF SENSORLESS INPUT PARAMETERS OF SOLAR PANEL WITH ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) METHOD

被引:0
|
作者
Syafaruddin [1 ]
Abubakar, Muhammad Iqbal [1 ]
Soma, Hizkia Glorius [1 ]
Said, Sri Mawar [1 ]
Latief, Satriani [2 ]
机构
[1] Univ Hasanuddin, Dept Elect Engn, Jalan Poros Malino Km 6, Gowa 92171, Indonesia
[2] Univ Bosowa, Dept Architecture, Jalan Urip Sumoharjo Km 4, Makassar 90231, Indonesia
关键词
ANFIS network; Irradiance; Cell temperature; Solar cell; Training and validation process;
D O I
10.24507/ijicic.14.06.2259
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper aims to benefit the artificial neural network by means of the adaptive neuro-fuzzy inference system (ANFIS) method to determine the input parameters of solar panel without using any sensors. In this respect, the input parameters are the irradiance in W/m(2) and the cell temperature in degree Celsius. Normally, these two parameters are measured with pyranometer and temperature sensors which are expensive and giving the complexity of the solar panel systems. In this research, the parameters of irradiance and cell temperature are obtained with taking the voltage and current of one cell of solar panel as the input signals. These signals are given to ANFIS network through the training and validation process. As the ANFIS network is the multi input and single output network, there will be two developed ANFIS networks which indicate the estimated irradiance and cell temperature. The ANFIS networks are confirmed with the sum of square error regarding the type of membership function and the number of nodes structure.
引用
收藏
页码:2259 / 2271
页数:13
相关论文
共 50 条
  • [41] Dynamic characterization of flexible vibrating structures using adaptive neuro-fuzzy inference system (ANFIS)
    Ismail, A. Y.
    Ismail, R.
    Darus, I. Z. Mat
    2006 4TH STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT, 2006, : 155 - +
  • [42] Modeling of dielectric behavior of polymers nanocomposites using adaptive neuro-fuzzy inference system (ANFIS)
    R. A. Mohamed
    The European Physical Journal Plus, 137
  • [43] An adaptive neuro-fuzzy inference system (ANFIS) model to predict the pozzolanic activity of natural pozzolans
    Varol, Elif
    Benzera, Didem
    Ozcan, Nazli Tunar
    COMPUTERS AND CONCRETE, 2023, 31 (02): : 85 - 95
  • [44] Predicting bending rigidity of woven fabrics using adaptive neuro-fuzzy inference system (ANFIS)
    Behera, B. K.
    Guruprasad, R.
    JOURNAL OF THE TEXTILE INSTITUTE, 2012, 103 (11) : 1205 - 1212
  • [45] Optimation of AMC's Tensile Properties Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Seputra, Yulius Eka Agung
    Soegijono, Bambang
    INTERNATIONAL CONFERENCE ON CONDENSED MATTERS AND ADVANCED MATERIALS (IC2MAM 2018), 2019, 515
  • [46] Cylindrical Silicon Nanowire Transistor Modeling Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Rostamimonfared, Jalal
    Talebbaigy, Abolfazl
    Esmaeili, Teamour
    Fazeli, Mehdi
    Kazemzadeh, Atena
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2013, 8 (05) : 1163 - 1168
  • [47] Performance prediction of a hybrid microgeneration system using Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Yang, L.
    Entchev, E.
    APPLIED ENERGY, 2014, 134 : 197 - 203
  • [48] Adaptive neuro-fuzzy inference system (ANFIS) digital predistorter for RF power amplifier linearization
    Lee, KC
    Gardner, P
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2006, 55 (01) : 43 - 51
  • [49] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [50] Modeling strong ground motion attenuation via adaptive Neuro-fuzzy inference system (ANFIS)
    Ghodrati Amiri, G.
    Aghajari, S.
    Khorasani, M.
    Kazemi, A.
    International Journal of Earth Sciences and Engineering, 2013, 6 (01): : 28 - 38