DETERMINATION OF SENSORLESS INPUT PARAMETERS OF SOLAR PANEL WITH ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) METHOD

被引:0
|
作者
Syafaruddin [1 ]
Abubakar, Muhammad Iqbal [1 ]
Soma, Hizkia Glorius [1 ]
Said, Sri Mawar [1 ]
Latief, Satriani [2 ]
机构
[1] Univ Hasanuddin, Dept Elect Engn, Jalan Poros Malino Km 6, Gowa 92171, Indonesia
[2] Univ Bosowa, Dept Architecture, Jalan Urip Sumoharjo Km 4, Makassar 90231, Indonesia
关键词
ANFIS network; Irradiance; Cell temperature; Solar cell; Training and validation process;
D O I
10.24507/ijicic.14.06.2259
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper aims to benefit the artificial neural network by means of the adaptive neuro-fuzzy inference system (ANFIS) method to determine the input parameters of solar panel without using any sensors. In this respect, the input parameters are the irradiance in W/m(2) and the cell temperature in degree Celsius. Normally, these two parameters are measured with pyranometer and temperature sensors which are expensive and giving the complexity of the solar panel systems. In this research, the parameters of irradiance and cell temperature are obtained with taking the voltage and current of one cell of solar panel as the input signals. These signals are given to ANFIS network through the training and validation process. As the ANFIS network is the multi input and single output network, there will be two developed ANFIS networks which indicate the estimated irradiance and cell temperature. The ANFIS networks are confirmed with the sum of square error regarding the type of membership function and the number of nodes structure.
引用
收藏
页码:2259 / 2271
页数:13
相关论文
共 50 条
  • [21] An adaptive neuro-fuzzy inference system (ANFIS) approach for measuring country sustainability performance
    Tan, Yongtao
    Shuai, Chenyang
    Jiao, Liudan
    Shen, Liyin
    ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2017, 65 : 29 - 40
  • [22] ESTIMATION OF SUBSURFACE STRATA OF EARTH USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Srinivas, Y.
    Raj, A. Stanley
    Oliver, D. Hudson
    Muthuraj, D.
    Chandrasekar, N.
    ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2012, 47 (01): : 78 - 89
  • [23] Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    Mohandes, M.
    Rehman, S.
    Rahman, S. M.
    APPLIED ENERGY, 2011, 88 (11) : 4024 - 4032
  • [24] Detection Of Forearm Movements Using Wavelets And Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Guvenc, Seyit Ahmet
    Demir, Mengu
    Ulutas, Mustafa
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA 2014), 2014, : 192 - 196
  • [25] An adaptive neuro-fuzzy inference system (ANFIS) model for thermophysical properties of new refrigerant
    Sencan, Arzu
    Kose, Ismail Ilke
    Selbas, Resat
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2011, 27 (02): : 275 - 286
  • [26] Estimation of subsurface strata of earth using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Y. Srinivas
    A. Stanley Raj
    D. Hudson Oliver
    D. Muthuraj
    N. Chandrasekar
    Acta Geodaetica et Geophysica Hungarica, 2012, 47 : 78 - 89
  • [27] ANFIS (Adaptive Neuro-Fuzzy Inference System) based on Microgrid's Reliability and Availability
    Yadav, Geeta
    Joshi, Dheeraj
    Leena, G.
    Soni, M. K.
    2022 IEEE 10TH POWER INDIA INTERNATIONAL CONFERENCE, PIICON, 2022,
  • [28] Discharge predicted in compound channels using adaptive neuro-fuzzy inference system (ANFIS)
    Khattab, Noor I. I.
    Mohammed, Ahmed Y. Y.
    Mala Obaida, Arwa A. A.
    OPEN ENGINEERING, 2023, 13 (01):
  • [29] Predicting of daily reference evapotranspiration via Adaptive Neuro-Fuzzy Inference System( ANFIS)
    Cai, JB
    Liu, QX
    Liu, Y
    Land and Water Management: Decision Tools and Practices, Vols 1 and 2, 2004, : 485 - 489
  • [30] APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) TO PREDICT THE WEAR OF FORGING TOOLS
    Hawryluk, Marek
    Mrzyglod, Barbara
    METAL 2016: 25TH ANNIVERSARY INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2016, : 378 - 385